Code No: 123AA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2016

MATHEMATICS-II

(Common to CE, MMT, AE, PTE, CEE)

Max. Marks: 75 Time: 3 Hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

What is the greatest rate of increase of $\phi = xy^2z^2$ at the point (-1,1,2)? (25 Marks) 1.ä) If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ then show that $\nabla^2(r^n) = n(n+1)r^{n-2}$ where $r = |\overline{r}|$. [3] b) Write the Euler's formula in the interval $(c,c+2\pi)$, for finding Fourier series.[2] c) Find the value of a_0 for the function $f(x)=e^{-x}$ in the interval $0 < x < 2\pi$. d) Evaluate $\frac{\Delta^{2}}{e^{x}}$. Express the function $f(x)=2x^4-6x^3+5x^2-20x+10$ in factorial notation. f) Show that the rate of convergence of Bisection method is linear. Establish Newton Raphson's method for determining the approximate value of the h) root of the equation f(x)=0.... Write Simpson's $\frac{1}{3}$ rule.

Evaluate K₃ for the equation $\frac{dy}{dx} = y - x$, y(0) = 1.5 by using Runge-Kutta 4th j) [3] order method.

PART-B

(50 Marks)

- Find the directional derivative of f = xy + yz + zx in the direction of vector 2.a) i + 2 j + 2k at the point (1,2,0).
 - b)

- Find the scalar potential of $\overline{F} = (z + \sin y)i + (-z + x\cos y)j + (x y)\overline{k}$. [5+5]

 OR

 Prove that $(y^2 z^2 + 3yz 2x)\overline{i} + (3xz + 2xy)j(3xy 2xz + 2z)k$ is both 3.a) solenoidal and irrotational.
- Find the flux of the vector field $\overline{A} = (X 2Z)\overline{i} + (x + 3y + z)\overline{j} + (5x + y)\overline{k}$ b) through the upper side of the triangular ABC with vertices at the points A(1,0,0), B(0,1,0), C(0,0,1)

4.a) b)	Obtain a Fourier expansion for $\sqrt{1-\cos x}$ in $-\pi < x < \pi$. Find the Fourier transform of $f(x) = \frac{1}{3} \frac{ f }{ f } x < a$ where a is a positive a and a is a positive a where a is a positive a is a positive a and a and a is a positive a and a and a is a positive a and a and a and a is a positive a and a an	ive real
	number. Hence deduce that: i) $\int_0^{\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$ and ii) $\int_0^{\infty} \left(\frac{\sin t}{t}\right)^2 dt = \frac{\pi}{2}$.	[5+5]
5.a)	Express coshx in Fourier series in $0 < x < .2\pi$.	
b)	Find the Fourier transform of f(x) given by $f(x) = \begin{cases} x^2 & \text{if } x \le a \\ 0 & \text{if } x > a \end{cases}$	[5+5]
.6.a) b)	Find the cubic polynomial interpolation which takes on the values: $f_0=5$, $f_1=1$, $f_2=9$, $f_3=25$, $f_4=55$. The mode of a certain frequency curve $y=f(x)$ is very near $x=9$ and the	value of
	the frequency density $f(x)$ for $x=8.9$, 9.0 and 9.3 are respectively equal 0.35 and 0.25. Calculate the approximate value of the mode.	[5+5]
	OR	léss fhan
7.a)	From the following table; find the number of students who obtained 45 marks:	i ii
	Marks 30-40 40-50 50-60 60-70 70-80 No of Students 31 42 51 35 31	
b)	Fit a second degree parabola to the following data, taking x as the indepe	[5+5]
	variable. x: 1	
8.a)	Evaluate $\sqrt{29}$ by Newton-Raphson formula. Correct to four places of dec	
b)	Apply Gauss-Seidal iteration method to solve equations.	.[5+5]
	$10x_1+x_2+x_3=12$, $2x_1+10x_2+x_3=13$ and $2x_1+2x_2+10x_3=14$	
9.a)	By iteration method, find the root of $\tan x = x$ up to four decimal places.	
b)	Apply Jacobi iteration method to solve equations. 27x + 6y - z = 85, $6x + 15y + 2z = 72$ and $x + y + 54z = 110$.	[5+5]
10:ā)	Calculate the approximate value of $\int_0^{\frac{1}{2}\pi} \sin x dx$.	Fine Seri
	i) By Trapezoidal rule	
b)	Given the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with $\frac{dy}{$	y=0 wher
	x=0, use Picard's method to obtain y for x=0.25, 0.5 and 1.0 correct decimal places.	t to three [5+5]
	OR	

11.a) Use Simpson's three-eights rule to obtain the value of $\int_0^{0.3} (1-8x^3)^{\frac{1}{2}} dx$.

Solve the boundary-value problem y''=y(x); y(0)=y(1)=0: by the shooting method.

[5+5]

(25 Marks)

[3+7]

[5+5]

Code No: 123BX

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 FLUID MECHANICS AND HYDRAULIC MACHINERY

(Electrical and Electronics Engineering)

PART - A

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

1.a) b)	Explain intensity of pressure and pressure head. How the pressure can be measured by a manometer?	25	[2]
c) d) e)	What is Reynold's number and mention its significance? Explain the working principle of an orifice meter. What is the need of surge tank on penstock? What is catchment area and mention its importance? Differentiate between impulse and reaction turbine. How governing of speed is done on Pelton wheel? Differentiate between centrifugal pump and reciprocating What is water hammer and how can it be eliminated?	pump.	[2] [3] [2] [3] [2] [3] [2] [3] [2] [3]
	PART - B	25	(50 Marks)
2.a) b)	Describe the working of U-tube manometer with enlarged In a Brahma press, the plunger and cylinder are having respectively. A weight of 4500 kg is kept on cylin connecting plunger and cylinder is filled with oil of sp.gr is required for equilibrium? OR	g areas of 5 der. The v	force on the plunger [3+7]
3.a) b)	Distinguish between i) steady and unsteady flow ii) un In a steady flow, two points A and B are 0.5 m apart	on a straigt	i stream inc. ii the

velocity of flow varies linearly between A and B, What is the acceleration at each point, if the velocity at 'A' is 3 m/sec and velocity at 'B' is 8 m/sec.

Explain the principle and working of venturi meter with a neat sketch. 4.a) Derive Darcy weisbach equation. b)

OR Derive Bernoulli's equation for incompressible fluids and mention its limitations.

5.a) b) A compound piping system consists of 2000 m of 0.6 diameter, 1000 m of 0.5 m diameter, 800 m of 0.4 m diameter, with new cast-iron pipes connected in series. Convert this system to i) an equivalent length of pipe of 0.4 m. diameter ii) an equivalent size of 4000 m. long.

How the power can be estimated from the hydro-electric power station? 6.a)

A Jet of water of 80 mm diameter with a velocity of 25 m/sec strikes a series of flat plates b) arranged around the periphery of a wheel such that each plate appears successively before the Jet. If the plates are moving at a velocity of 6 m/sec, find the force exerted by the Jet [3+7]on the plate, work done per second and efficiency.

Explain about hydraulic efficiency, mechanical efficiency, volumetric efficiency of 7.a)

hydraulic turbine.

b) An inward flow reaction turbine with radial discharge has an overall efficiency of 85% is required to develop 160kW. The head is 10 m, peripheral velocity of the wheel is $0.95\sqrt{2gH}$, the radial velocity of flow is $0.4\sqrt{2gH}$, the wheel is made to run at 160 rpm and the hydraulic losses to be 22% of the available energy. Find i) angle of guide blade at inlet. ii) vane angle at inlet. iii) diameter of wheel.

What factors are to be considered during the selection of hydraulic turbine? 8.a)

A Kaplan turbine produces 80 MW under a head of 30 m with an efficiency of 85%. b) Taking the value of speed ratio Ku as 1.6, flow ratio as 0.55 and hub diameter as 0.4 times the outer diameter, find the diameter and speed of turbine. [3+7]

9.a) What are the various elements needed for hydro-electric power plant?

A Jet of water having a velocity of 50 m/sec impinges without shock on a series of moving vanes at 20 m/sec at an angle 200 to the direction of motion. The relative velocity at outlet is 0.9 of that at inlet and water at exit is normal to the motion. Find i) vane angles at inlet and exit ii) work done per unit weight iii) hydraulic efficiency.

10.a) What are the hydraulic losses in centrifugal pump?

b) Find the power required to drive a centrifugal pump, which delivers 50 litres of water per sec to a height of 25 m through 125 mm diameter and 100 m long pipe line. The overall efficiency of pump is 80% and frictional coefficient f = 0.07 for the pipe line, Assume the inlet losses in suction pipe equal to 0.4 m.

11.a) Differentiate between volute diffuser type of pumps used in practice.

b) Derive an expression for specific speed of a centrifugal pump.

Code No: 123AW

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016

SIGNALS AND SYSTEMS (Common to ECE, EIE, ETM)

Max. Marks: 75 Time: 3 Hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

- Define even and odd components of the signal how do you get it. 1.a) Sketch the unit step function and signum function bring the relation between them.[3] b) Distinguish between Series and Transform in the Fourier representation of a signal.[2] c) Define and write the conditions of sampling theorem. d) [2] Characterize a Linear Time Invariant (LTI) System. e) Express and derive the Relationship between Bandwidth and Rise time. [3] f) [2] Write the Convolution property of Fourier Transform. g) [3] Distinguish between Cross Correlation and Auto Correlation. h) Write the Fundamental difference between Continuous and Discrete time signals. [2] i)
 - [3] j) Find the Z transform of x[n] = u[-n].

(50 Marks)

- Explain orthogonality property between two complex functions f₁(t) and f₂(t) for a 2.a)
 - Define and derive the expression for evaluating mean square errors and its types.

[5+5]

OR

Find the Exponential Fourier series for the rectified Sine wave as shown in figure. 3. [10]

f(t)

- Obtain the Fourier transform of the following functions: 4.
 - a) Impulse Signal
 - b) Single symmetrical Gate Pulse.

[5+5]

OR

- Write about the types of Sampling and compare the Impulse Sampling, Natural and 5.a) Flat top Sampling methods.
 - Describe about the Hilbert Transform and express its properties. b)

[5+5]

6. Explain	n the difference bear and Non-linea	between the follower systems.	wing systems wit	h examples.	
b) Cau	sal and Non-Cau	sal systems.			[5+5]
7. Define LTI sy 8.a) Discus Explai 9. Discus theore	Time invariant a stem be 1/jw+2 c ss and Prove Prop n briefly extracti ss the impact of c m to find the spe	OF and shift invariar evaluate the output perties of auto control on of a signal fro OI convolution for fictrum of x(t) = A	It systems and grant of the system for the system for the system of the system out the system out the system out the system out $\cos^2 \omega_c t$.	tput and Use the	[5+5]
10.a) State t	he properties of the step response	the ROC of Lapla of series RL circ	ace Transform ar uit using Laplace	d its existances. transform methor	od. [5+5]
44 \ 72!	les inverso 7 tran	osform and ROC ween z and Lapla	R oiven X(z)= log($1/1-az^{-1}$).	
		00()00		
25					
in the second			26		Company State Pers
26					
Server Server					
eme em	5 ¹⁰ 3 2 ²		94	(78A)	

Code No: 223AD

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Pharmacy II Year I Semester Examinations, November/December-2016

PHYSICAL PHARMACY - I

Time: 3 hours	Max Marks: 75
---------------	---------------

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question

Part B consists of 5 U carries 10 marks and r	Inits. Answer any on ay have a, b, c as s	one full questions.	n from each um	t. Each question
	PART- A			(25 Marks)
 1.a) Define dipole moment b) What is dielectric con c) Define first law of the d) Define phase rule and e) Write Arrhenius equa 	stant? ormodynamic. phase equilibria.	1.		[2] [3] [2] [3] [2]
 f) Write three properties g) Define pH and write i h) Define acidity constant i) What is buffer capaci j) Enumerate isotonicity 	of electrolyte solutes ignificance. Its and their use. Its?	tions.	57	[3] [2] [3] [2] [3]
26 26	PART-B			(50 Marks)
2.a) Write a note on the fo	ollowing properties	and their impo	rtance in the pha	armacy
i) Dipole moment ii)b) Describe dielectric co	onstant induced pol	arization.		[5+5]
3.a) Describe the applica	tions of refractive	OR index and opt	tical rotation in	the elucidation of
chemical structure w b) Discuss the physical	ith examples.			[5+5]
4.a) Describe the charac	eteristics of a spo	ntaneous reac	tion with exam	ples. Explain the
thermodynamic state b) Explain phase equili	functions for such bria for system con	processes. taining two cor	mponent.	[5+5]
5.a) What do you under relationship betweenb) Derive thermodynan	41			s significance.
b) Derive thermodynan			44 8000	[5+5]
6.a) What are Colligative b) Explain the modern	e property? Discuss theories of electrol	ytic dissociatio	depression with n of strong elect	significance. rolytes. [5+5]
7.a) Explain the Arrheni b) What are ideal and i	us theory of electro real solutions? Disc	uss in detail wi	ith examples.	[5+5]

c) Discus	ss on Sorenson's		OR	oH of a solution t	[3+4+3]	
9.a) Descri electro b)::What	ometric method. do you meant by	conjugate acid-b	ase pair?		[5+5]	
10.a) Write	in brief about cla	ass II methods of ouffers in Pharma	adjustment of to	nicity of solution		
11.a) Write	the postulates of the Henderson H	Debye-Huckel tl assalbaleh:equati	neory of electroly on for an acid bu	ytes ıffer and write its	s applications. [5+5]	
		00	0O00			
26		1.25 g/m 1.25 g/m 1.25 g/m	200 200 200 200 200 200 200 200 200 200		25	
Zb			26	26	26	200
					Jan Jan	
	Em (m)		256	a G		9
		ä.	Źħ		**************************************	
*********	704E		(14g),		794 ,	

Code No: 113AC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November/December - 2016

MECHANICS OF SOLIDS

(Common to ME, MCT, MMT, AE, AME, MSNT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

					(25 Ma	rks)
1:2)	Define proof stress.					[2]
1.a) b)	Define factor of safe	ty and its impo	ortance.			[3]
,	What do you mean b	y point of infl	ection?			[2]
c)	what do you mean o	y point of mir	contion?			[3]
d)	What is the meaning	of strength of	a section:			[2]
e)	Define section modu	llus and its imp	portance?			_
f)	What is meant by p	ure bending?	What are the ass	umptions made	in theory of	pure
1.)	bending?			ged Bres		[3]
	beliang:	tond by the ter	m Theories of fai	lure?		[2]
g)	What do you unders	tand by the ter	C 1 the soluti	on of atroop analy	reie problem	
h)	What is Mohr's circ	le? How is it u	setul in the soluti	On or suess arrary	ysis problem	. [5]
i)	What do you mean b	y equivalent t	orque?			[2]
j)	Distinguish between	circumferenti	al stress and long	itudinal stress?		[3]
J)	25.5					
	Zar guni		PART – B		time has P	
0.000					(50 M ₃)	arks)
			advocd in a hadr	due to suddenl	`	

2.a) Prove that the maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually?

b) A bar of 30 mm. dia. is tested in tension under a load of 60 kN. The extension measured over a length of 250 mm is 0.21 mm and construction in diameter is 0.008 mm. Find Poisson's ratio and elastic constants, E and G (Modulus of elasticity and modulus of rigidity). [5+5]

OR

3.a) Define modular ratio, thermal stress, thermal strain and Poisson's ratio.

b) A steel rod 5 cm diameter and 6 m long is connected to two grips and the rod is maintained at a temperature of 100^{0} C. Determine the stress and exerted when the temperature falls to 20^{0} C if i) the ends do not yield ii) the ends yield by 0.15 cm. Take $E = 2 \times 10^{5} \text{ N/mm}^{2}$ and $\alpha = 12 \times 10^{-6}/^{0}$ C. [5+5]

4. A simply supported beam of length 8 m rests on supports 6 m apart, the right hand end is overhanging by 2 m. The beam carries a uniformly distributed load of 1500 N/m over the entire length. Draw S.F and B.M diagrams and find the point of contra flexure, if any.

OR

5. A beam of length 12 m is simply supported and carries point load of 3 kN at a distance of 3 m, and 5 kN at a distance of 7 m from left support and also a uniformly distributed load of 3 kN/m between the point loads. Draw the S.F and B.M diagrams for the beam.

- What do you understand by neutral axis and moment of resistance? 6.a)
- A beam of I-section is having overall depth as 500 mm and overall width as 190 mm. b) The thickness of flanges is 25 mm where as the thickness of the web is 15 mm. The moment of inertia about N-A is given as 6.45×10^8 mm⁴. If the section carries a shear force of 40 kN. Calculate the maximum shear stress. Also sketch the shear stress distribution across the section.

Prove that the maximum shear stresses in a circular section of a beam is 4/3 times the 7.a)

average shear stress?

- A beam of a T-section is used as a cantilever with flange at top. The flange is 130 mm wide \times 25 mm deep and web is 20 mm wide and 130 mm deep is 2m long. Determine the maximum permissible load which may be suspended from the free end of the cantilever if the limiting stresses in tension and compression are 90 N/mm² and [5+5]150 N/mm² respectively.
- Define and explain the following theories of failure. 8.a)

i) Maximum principal stress theory

ii) Maximum Principal strain theory

The normal stresses in two mutually perpendicular directions are 620 N/mm² and b) 310 N/mm² both tensile. The complimentary shear stresses in these directions are of intensity 400 N/mm². Find the normal and tangential stresses on the two planes which are equally inclined to the planes carrying the normal stresses mentioned above.

OR

Write a note on Mohr's circle of stresses. 9.a)

- The principal stresses at a point in an elastic material are 22 N/mm² (tensile), .b) 110 N/mm² (tensile), and 55 N/mm² (Compressive), If the elastic limit in simple tension is 220 N/mm² and $\mu = 0.3$. Determine whether the failure of material will occur or not according to the i) Maximum shear stress theory ii) Maximum strain energy theory.
- Explain briefly about the effect of internal pressure on the dimensions of a thin 10.a)
 - Find the maximum shear stress induced in a solid circular shaft of diameter 20 cm when the shaft transmits 187.5 kW at 200 rpm.

Derive an expression for the shear stress produced in a circular shaft which is 11.a) subjected to torsion. What are the assumptions made in the derivation?

A water main 90 cm diameter contains water at a pressure head of 110 m. If the weight density of the water is 9810 N/mm³. Find the thickness of the metal required for the water main. Given the Permissible stress as 22 N/mm².

--ooOoo--

Code No: 113BJ

axial load.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016

STRENGTH OF MATERIALS-I

	1	(Commo	n to CE, CEE)		
Time	3 Hours	(00111111	,	Max	k. Marks: 75
I IIIIe.	J 110013	UCHO 155		100	240
Notes	This question paper	contains two p	arts A and B.		Same Sand
Mote:	Dort A is compulsory	v which carries	25 marks. Answe	er all questions in	n Part A.
	Part B consists of	5 Units An	swer any one f	ull question fro	om each unit.
	Each question carrie	s 10 marks		•	le .
	Each question carrie	5 TO THURS.			
m a	, AND US	ann an p	ART- A	CONAC.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 10 10 1 10 1 10 1 10 1 10 1 10 1 10	P		See See	(25 Marks)
1	Distinguish between	alacticity and	nlasticity		[2]
1.a)	D' 1 d Lalle mode	ulus of the ma	iterial of a har of	length 200 mn	n and diameter
b)	30 mm, whose You	na's modulus	is 2.1 $\times 10^5$ N/mm	² . It is observed	that due to the
	action of an axial lo	ng s modulus	tion of the bar is	0.12 mm and th	e change in the
40,000	action of all axial in	m			[3]
c)	diameter is 0.005 m	m.		Same Tool	[3] [2]
	Define the point of Obtain the relations	hin hatween sh	ear force and ben	ding moment.	[3]
d)	The cross-section o	f a boom has re	ectangular shape a	and is subjected	to a shear force
e)	of 100 kN. Determ	ing the retio of	the maximum sh	near stress to me	an shear stress.
	of 100 kN. Determ	me the ratio of	the maximum or		[2]
200 200	State the assumptio	n mada in the t	heary of simple h	ending	[3]
f) g)	State the assumption	n made in the t	neory or sample of	c c c c c c c c c c c c c c c c c c c	[2]
	Define the principa	I planes and un	rain theory of fail	ure	[3]
h)	Explain the maximum State the Mohr's th	um principai si	the deformations	of a beam subject	
i)	State the Monr's th	eorems to mid	the deformations	or a commence	[2]
45	A beam of length	(1) and consts	ent flevural rigidit	v is subjected t	E 3
<u>j</u>)	A beam of length Determine the mid-	L and consta	o if the magnitude	of the moment	is 'M'.[3]
S	Determine the mid-	-span deffection	II II the magnitude	or mountain	Lili
			PART-B		
			I AKI-D		(50 Marks)
020 10	A solid steel bar 50	00 mm long or	od 70 mm diamete	er is placed insid	le an aluminium
2.a)	tube having 100 m	oo min long al	neter and 75 mm	inside diameter.	The aluminium
7-1	tube is 0.15 mm lo	man than the	teel har An axial	load of 600 kN	is applied to the
1.m. 102	bar and tube asse	mger man me s	the rigid cover	plates. Determ	ine the stresses
	developed in the	emory unough	duminium tuhe	Adopt modulus	of elasticity for
	developed in the steel is 2×10^5 N/m		anummum tube.	r aluminium is 0	$1.7 \times 10^5 \text{ N/mm}^2$.
	Derive the relation	and the re	modulus of elastic	sity bulk modul	us and Poisson's
b)		iship between	modulus of clastic	ity, out mount	[6+4]
	ratio.	100	OR	Jon Bree	
	A steel bar of len	-41- 15 m and	50 mm diameter	is subjected to s	suddenly applied
3.a)	A steel bar of lengaxial load of 125	giii 1.5 iii and	ne the instantane	ous stress induc	ced and also the
	axial load of 125	KIN. Determin	or	out offer men	
- 40%	instantaneous elon Derive an express	igation of the o	in energy stored i	n a body due to	suddenly applied
b)	Derive an express	ion for the stra	in energy stored r	in a body day	[7+3]

1 1 1 1 1 1

Figure: 1 OR

Draw the shear force and bending moment diagrams for the beam supported and loaded as shown in figure 2. [10]

Figure: 2

6. A simply supported beam of span 5 m has an unsymmetrical I-section as shown in figure 3. The total depth of the section is 200 mm. Determine the intensity of uniformly distributed load that the beam can carry if the permissible stress is 165 N/mm².

Figure: 3 OR

7. Draw the shear stress distribution of a T-section having flange width of 250 mm and total depth of 300 mm. The thickness of the flange as well as web is 16 mm. The section is subjected to a shear force of 200 kN. Also find the ratio of the maximum shear stress to the average shear stress.

The state of stress at a point in a strained member is shown in Figure 4, using the Mohr's circle of stress, determine (a) the plane of action and the magnitude of the principal stresses, (b) the maximum shear stress and (c) the stresses acting on a plane making 60° in the anti-clockwise direction with respect to x-axis. [10]

9. The principal stresses in a strained three dimensional body are 100 MPa (Tensile), 50 MPa (Tensile) and 25 MPa (Compressive). Determine the factor of safety according to Strain energy theory and Shear strain energy theory. The yield stress of the material of the body is 260 N/mm²... Adopt E = 200. GPa and the Poisson's ratio = 0.3.

10. A simply supported beam of span 4 m is subjected to the loading as shown in figure 5, find the maximum deflection and the slopes at the supports. Assume *EI* is constant.

11. A cantilever beam of span 2 m is subjected to the loading as shown in Figure 6. Using conjugate beam method, determine the slope and the deflection at the free end.

Figure: 6

---00O00:::-

Code No: 113BW

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016

ELECTRICAL CIRCUITS (Common to EEE, ECE, ETM)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	25		PART – A	time ter	(25 M	arks)
1.a) b) c) d) e) f)		vs. value. of Power Fa ance of coeff s laws of elec	actor?	22 (<u>°</u>), n.		[2] [3] [2] [3] [2] [3] [2]
g) h) i)	What is meant by d States the propertie What are the condit State the Thevenin'	s tree. tions for Max	kimum Power Transfe	r in DC and A		[3] [2] [3]
			PART - B		(50 N	Iarks)

Explain the Independent and Dependent Sources with diagrams. 2.a)

For the circuit shown in the figure 1, find the current flowing in all the branches. [4+6] b)

Two resistances of 10Ω and 40Ω respectively are connected in parallel. A third 3.a) resistance of 50 is connected in series with the combination and a D.C supply of 240 V is applied to the ends of the completed circuit. Calculate the current in each resistance.

Obtain the V-I relationship for R,L,C components. b)

[5+5]

Define the following: 4.a) i) RMS value ii) Form factor and iii) Peak factor. Derive an expression for these when a sinusoidal source is applied to a circuit. [6+4]Explain the concept of complex power. b) A coil of insulated wire of resistance 10Ω and inductance 0.003H is connected to an a.c. supply at 240V, 50-Hz. Calculate: a) The current, p.f and the power b) The value of capacitance which when connected in series with the above coil, causes no change in the values of the current and power taken from the supply. Derive the expression for resonance frequency of parallel circuit considering a coil .-6.a) 11... parallel to pure capacitance... Draw the locus diagram of R-L circuit when excited by constant voltage and variable b) [5+5]frequency supply. Define leakage factor and its effects on magnetic circuits. 7.a)[5+5]Explain dot convention in coupled circuit. :: <u>(</u>b) Explain the following terms with respect to graph theory. 8.a) iii) link iv) sub-graph. ii) tree [4+6]Find the incidence matrix in the figure 2. b) 7Ω 6Ω Ω 8 $10\Omega^{c_4}$ 20 V 9Ω Figure: 2 OR For the network shown in figure 3 determine all branch currents and the voltage across 9. [10] the $6-\Omega$ resistor by loop current analysis. * 25 V WW 7Ω Figure: 3.

State and explain superposition theorem. 10.a) Find Norton's equivalent circuit for the circuit shown in figure 4. [4+6]b) 3Ω 10 Ω 6Ω 50 V 10 V Figure: 4 OR Determine the current I in the branch AB of circuit shown in figure 5 by using Norton's 11. theorem: /10 D /20 D 660 11-000 -/10 Q + / 10 Q 10.0 **≨** 20.Ω 50 Z O V 100 ∠ 30* B Figure: 5 --ooOoo--

Code No: 113BN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE. IT)

Time: 3 Hours	(Common to CSE, IT)	Max.	Marks: 75
Note: This question paper contains t Part A is compulsory which ca Part B consists of 5 Units. A carries 10 marks and may hav	arries 25 marks. Answer all quanswer and one full question t	estions in Part A. from each unit.	Each question
	PART – A		(25 Marks)
good teacher" b) The propositional function ((proposition)) c) Which of the following are partial in a second of the function	artitions of $\{1,2,3\}$, explain the ii) $\{\{1,3\},\{2,3\}\}$ on $f(x) = x^4 + 5$. Here can be formed? The requires 4-English letters followly letters are allowed to repequation for $a_n+3a_{n-1}+4a_{n-2}-8a_1$ at the $(1+X^5+X^9)^{10}$. The dot obe deleted from K_5 to forwhether $K_{22,2}$ planar or not?	lowed by 4 - digent? not? reason. lowed by 4 - digent? notation and the sear. notation are spanning tree.	[2] [3] [2] [3] [2]
and the great from the second	PART - B		(50 Marks)
 b) Show that R V S follows logic C ∨ D, (C ∨ D) → ~ H, ~ H 3 a) Obtain principal disjunctive to the control of the c	the formula ($\sim p \vee \sim q$) $\rightarrow (\sim p)$ ($\sim p$) cally from the premises $I \rightarrow (A \wedge \sim B)$ AND $I \rightarrow (A \wedge \sim B)$ OR normal form (PDNF) for $I \rightarrow (A \wedge a)$ oving, prove that $I \rightarrow (A \wedge a)$	$(p \to q) \land \sim (\sim q)$	[5+5] $(5+5)$
b) Let $A = \{1, 2, 3, 4, 5\}$ and rel $R = \{(1,1),(2,2),(3,3),(1,3),(3,4)\}$. Draw the Hasse diagram for	that R is Equivalence relation. ation 4),(3,5),(1,4),(4,4),(1,5),(2,3),(R.	2,4),(2,5),(5,5)}	[5+5]
$R = \{(x,y) \mid x,y \in X \text{ and there } compatibility relation. Draw \}$	g, let}, and R is a relation is at least a common letter be	tween x and y}.	Show that is a
blocks for it. b) Explain properties of binary	relation with examples.		[5+5]

- Find the number of ways of distributing 26 similar balls into 6 numbered boxes where each 6.a) box contains at least 2 balls.
- How many different 10-digit numbers can be formed by arranging the digits b) 1,1,1,1,2,3,3,3,4,4. OR ...
- Expand the multinomial $(2x-6y-3z)^4$. 7.a)
 - A certain computer center employs 100 computer programmers of these 49 can program in b) C, 36 in C++ and 25 can program in both language. How many can program in neither of these two language.
- 8.a)... Find the solution for the recurrence relation $a_{n-1} 9a_{n-2} + 9a_{n-3} = 0$ for $n \ge 3$, and $a_0 = 0$, $a_1 = 1$,
 - Find the solution for the recurrence relation $a_n=a_{n-1}+n(n-1)$, where $a_0=1$. b)

- Solve the recurrence relation using characteristic roots method $a_n + a_{n-1} 5a_{n-2} + 3a_{n-3} = 0$ where $a_0 = 0$, $a_1 = 1$ and $a_2 = 2$.
- b) Solve $a_n = a_{n+1} + 2n + 1$ where $a_0 = 1$, using substitution method.

Figure 1

Show that in any connected planar graph |V|-|E|+|R|=2. b)

[2+8]

OR

Show that the following graph is not containing Hamiltonian Cycle (Figure 2). 11.a)

Figure 2.:

Show that in any Polyhedral graph, |E| <= 3|V|-6:

[5+5]

--00O00--

Code No: 53021

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2016 SIGNALS AND SYSTEMS

(Common to ECE, EIE, ETM)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

Define a Signal. What are the different types of signals? 1.a)

- Derive the expression for component vector C12 of approximating the function b) $f_1(t)$ over $f_2(t)$ and also prove that the component vector becomes zero if the $f_1(t)$ and $f_2(t)$ are orthogonal.
- Show that the following two signals are orthogonal over a interval [0 1] for c) [3+6+6] $f_1(t) = 2$ and $f_2(t) = \sqrt{3}(1 - 2t)$.

State the properties of the Fourier series. 2.a)

Determine the Fourier series representation for $x(t) = 2 \sin(2\pi t - 3) + \sin 6\pi t$. [7+8] b)

What is Hilbert transform? How does it differ from other transforms? 3.a)

Find the Fourier transform of the signal b)

[7+8]

 $x(t) = \begin{cases} e^{-|t|} & for - 4 \le t \le 4 \\ 0 & otherwise \end{cases}$

- Show that the output of an LTI system is given by the convolution sum of the 4.a) input and system function.
 - Let the system function of an LTI system be $1/(j\omega + 3)$. What is the output of the b) system y(t) for an input $(0.5)^t u(t)$?
- Find the convolution of the signals $x_1(t) = e^{-at} u(t)$; $x_2(t) = e^{-bt} u(t)$ using Fourier 5.a) transform.
 - [8+7]Obtain the relation between convolution and correlation. b)

State and prove the sampling theorem for band-limited signals. 6.a)

A signal having a spectrum ranging from dc to 20 kHz is to be sampled and b) converted into discrete form. What is the minimum number of samples per second [8+7]that must be taken to ensure recovery?

Define Laplace Transform and discuss its existence. 7.a)

- Find Laplace Transform of: i) $x(t) = t^2 u(t)$ ii) $x(t) = e^{-at} \sinh \omega t u(t)$. [7+8]... b)
 - Distinguish between one-sided and two sided Z-transforms. What are their 8.a) applications?
 - Solve the following difference equation b)

y(n) + y(n-1) = x(n)

with $x(n) = (1/3)^n u(n)$ and the initial condition y(-1) = 1.

[8+7]

Code No: 53014

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016

PROBABILITY AND STATISTICS (Common to ME, CSE, AME, MIE, MSNT)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

Six persons toss a coin turn by turn. The game is won by the player who first 1.a) throws head. Find the probability of success of the fourth player.

A box contains 4 right-handed and 6 left handed screws 3 screws are drawn at b) random without replacement let X be the number of left handed screws drawn. Find: (i) The probability distribution of X (ii) Expectation of X (iii) Variance of X.

With the usual notations, find p for a binomial random variable X if n= 6 and if 2.a)9P(X = 4) = P(X = 2).

- The hourly wages of 1000 workmen are normally distributed around a mean wage b) of Rs.70 and with a standard deviation of Rs. 5. Estimate the number of workers whose hourly wages will be:
 - i) between Rs. 69 and Rs.72.
 - ii) more than Rs.75
 - iii) less than Rs. 63
 - iv) Also estimate the lowest hourly wages of the 100 highest paid workers. [7+8]
 - The mean yield of wheat from a district A was 210 kgs with standard deviation 3.a) 10kgs. per acre from a sample of 100 plots. In another district B, the mean yield was 220 kgs with standard deviation of 12 kgs from a sample of 150 plots.

Assuming that the standard deviation of the yield in the entire state was 11 kgs, test whether there is any significant difference between the mean yield of crops in the two districts.

- In order to make a survey of the buying habits, two markets A and B are chosen at b) two different parts of a city 400 women shoppers are chosen at random in market A. Their average daily expenditure on food is found to be Rs 250 with a standard deviation of Rs 40. The figures are Rs 220 and Rs 55 respectively in the market B where also 400 women shoppers are chosen at random. Test at 1% level of significance whether the average daily food expenditures of the two populations of shoppers are equal.
- 500 apples are taken at random from a large basket and 50 are found to be bad. -4.a) Estimate the proportion of bad apples in the basket and assign limits within which the percentage most probably lies.
 - A machine produced 20 defectives articles in a batch of 400. After over handling b) it produced 10 defectives in a batch of 300. Has the machine improved? [7+8](Take α =0.01).

- A machine is a designed to produce insulating washers for electrical devices of 5.a) average thickness of 0.025cm. A random sample of 10 washers was found to have an average thickness of 0.024 cm with a standard deviation of 0.002 cm. Test the significant of the deviation value of t for 9 degrees of freedom at 5% level is 2.262.
 - Two random samples were drawn from two normal populations and their values b)

90 88 75 76 82 84 66 67 A: 95 97 93 85 87 92 78 82 74 64 66 B: Test whether the two populations have the same variance at the 5% level of significance (F=3.36) at 5% level for v_1 =10 and v_2 =8. [7+8]

Calculate coefficient of correlation from the following date. .-6.a)

11 13 7 8 10 12 9 X 11 12 9 14 8 6 Y

Calculate the coefficient of correlation and obtain the lines of regression for the b) following data:

7 5 2 3 X 1 11 13 14 10 12 9

Obtain an estimate of y which should correspond to the average X = 6.2. [7+8]

- Customers arrive at a sales counter manned by a single person according to a 7.a)Poisson process with a mean rate of 20 per hour. The time required to serve a customer has an exponential distribution with a mean of 100 seconds. Find the average waiting time of a customer.
 - Customers arrive at a one-window drive according to a Poisson distribution with mean of 10 minutes and service time per customer is exponential with mean of 6 minutes. The space in front of the window can accommodate only three vehicles including the serviced one. Other vehicles have to wait outside this space.

- i) Probability that an arriving customer can drive directly to the space in front of the window.
- ii)Probability that time arriving customer will have to wait outside the directed
- iii)How long arriving customer is expected to wait before getting the service?

[5+10]

Consider the Markov chain with transition matrix $P = \begin{bmatrix} 3/4 & 0 & 1/4 \\ 0 & 1 & 0 \end{bmatrix}$ 8.

a) Show that this is irreducible and aperiodic.

b) The process is started in state 1; find the probability that it is in state 3 after two steps.

c) Find the matrix which is the limit of P_n as $n \to \infty$.

[5+5+5]

---00000---

Code No: 53001

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II: Year I Semester Examinations, November/December - 2016

MATHEMATICS-II (Common to CE, CHEM, MMT, AE, BT, PTE)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

- Find whether the following system of equations are consistent. If so solve them 1.a) x + 2y + 2z = 2, 3x - 2y - z = 5, 2x - 5y + 3z = -4; x + 4y + 6z = 0.
 - If A, B are invertible matrices of the same order, then show that b)

$$(AB)^{-1} = B^{-1}A^{-1} \qquad (A')^{-1} = (A^{-1})^{-1} = (A^{-$$

$$\mathbf{E} \cdot (A')^{-1} = (A^{-1})^{2}$$

- If λ is an Eigen value of A corresponding to the Eigen-vector X, then λ^n is Eigen value of A^n corresponding to the Eigen vector X.
 - Identify the nature of the quadratic forms $x_1^2 + 9x_2^2 + x_3^2 6x_1x_2 + 2x_1x_3 6x_2x_3$.
- Show that $A = \begin{pmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{pmatrix}$ is a Skew-Hermitian matrix and also unitary. Find the Eigen values and the corresponding Eigen vectors of A.
 - b): .: The Eigen values of a Skew-Hermitian matrix are purely imaginary or zero.
- Write the quadratic form corresponding to the matrix $\begin{pmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ 1 & 6 & 2 \end{pmatrix}$ 4.a)

b) Using the lagrange's reduction, transform
$$x_1^2 - 4x_2^2 + 5x_3^2 + 2x_1x_2 + 4x_1x_3 + 2x_4^2 + 6x_3x_4$$
 to canonical form.

- Find a Fourier series to represent $f(x) = x^2$ in the interval $(0, 2\pi)$ 5.a)
 - Expand $f(x) = e^{ax}$ in a Fourier series in $0 < x < 2\pi$. b)

[7+8]

6. Solve the boundary value problem
$$u_{tt} = a^2 u_{xx}$$
; $0 < x < l$; $t > 0$ with $u(0, t) = 0$; $u'(l, t) = 0$ and

$$u(x, 0) = 0, u_t(x, 0) = \sin^3\left(\frac{\pi x}{l}\right).$$

[15]

- An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π . This end is maintained at a temperature u_0 at all moints and the other edges are at zero temperature. Determine the temperature at any points and the other edges are at zero temperature. Determine the temperature at any [15]point of the plate in the study state.
- Find the Fourier sine transform of $f(x) = \frac{1}{x(x^2 + a^2)}$ and hence deduce cosine transform of

$$\frac{1}{x^2+a^2}$$

Code No: 123AP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 ELECTRICAL AND ELECTRONICS ENGIGEERING (Common to CE, ME, AME, PTE, CEE, MSNT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1000 F	11	(25 Marks	
1.a)	Define Kirchhoff's	Laws.			[2]	
h)	What is the purpose	e of controlling t	orque and dampi	ing torque?	[3]	
c)	Give the significan	ce of back emf in	n a de motor.		[2]	
d)	Derive the condition	n for Maximum	Efficiency of a I	D.C generator.	[3]	
. e)	"Transformer is a constant flux device". Justify the statement.					
f)	What are the different losses in a transformer?					
g)	What is the primary function of a rectifier filter?					
h)	State different applications of diode.					
i)	What is the difference between CRO and CRT?					
j).	List the application	is of CRO.	1 W F	فتنز والمتا	.[3] .	
et line	K., 4.,3	K L	this time	Y 1	41.40	
		D	TOTE D			

PART-B

(50 Marks)

Explain any one type of MI instruments. 2.a)

[5+5]Calculate the current in 5Ω resistor shown in figure. b)

State necessary equations to convert a delta network into equivalent star network. 3.a) Explain with an example.

Explain the principle of operation of PMMC instruments. [5+5]b)

Write the torque equation of DC motor and explain. 4:a)

Draw the neat diagram of three point starter and explain different parts. [5+5]6)

OR

5,a) '5)	Derive the induced e.m.f equation of a D.C. Generator. An 8-pole, D.C generator has 500 armature conductors, and a useful: flux: of 0.05 Wb per pole. What will be the emf generated if it is lap-connected and runs at 1200 rpm? What must be the speed at which it is to be driven to produce the same emf if it is wave wound? [5+5]						
6 <u>.a)</u>	Explain the operation Discuss how regularimpedance method.	Explain the operation of single phase transformer with neat diagram. Discuss how regulation of an alternator can be determined by synchronous impedance method. OR					
7.a)	Draw the phasor di	agram of transfo	ormer on load c	onsidering an in	ductive load		
(b)	and write the relevant List out the various	nt evaressions					
8.a) b)	What is a transistor'd Describe the difference characteristics.	? Distinguish different modes of	ferent configuration of a	ions of transistor	S.		
.9:a). b)	Explain the operation A single phase 230° supply through a discount of the control of the contro	on of a full wave	connected acros	ss single-phase 2.	JU 1, JUIIZ		
10.a) .b) 	Discuss about the e Explain with a bloc Derive the expressi Discuss how voltage	k diagram the magnetic on for magnetic	ajor parts of CR's OR :::::::::::::::::::::::::::::::::::	r	اری این این این این این این این این این ای		
	E.E.		0000				
	26		26	26			
	26		ZE				
Seed See	T.4.		24	26			

Max. Marks: 75

[5+5]

Code No: 123AU

Time: 3 Hours

....

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech II Year I Semester Examinations, November/December - 2016 ELECTRONIC DEVICES AND CIRCUITS

(Common to EEE, ECE, CSE, EIE, IT, ETM, MCT)

	4 4 4			The back	and the	Land South
"Nöte:	This question paper con	itains two	parts A	Yand B.	l avantinua in l	Dowt A
	Part A is compulsory w	nich carr	ies 25 n	narks. Answer al	n question from	each unit
	Part B consists of 5 Each question carries 10	Omus. A	and may	thave a h case	and anestions	cacii uiiic.
	Each question carries is	U IIIaiks a	and may	nave a, b, c as a	suo questions.	•
·		*T. 4.T.	PART-	A	25	
:1	i ii	this had		in test	Secretary	(25 Marks)
1.a)	Define static and dynam	nic resista	ance of	P-N diode.		[2]
b)	Explain about Zener bro					[3]
c)	Define ripple factor.					[2]
d)	Explain about voltage r	egulation	λ.	***	Description	.[3]
d) e):	What are the applicatio	ns of UII	Γ?	4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.44 2.45 5.44 2.45	:[2]:::
f)	What do you mean by					[3]
g)	Explain about collector		k bias.			[2]
h)	Write about thermal run		o of HCE	·m·		[3]
i)	Mention small signal p				S47	[2]
;; j)	Differentiate between I	ora, and J	rei.	APP		
's'	BAARE "080"	4.424 989	PART			11477 271
			TAXEL			(FO 3 (F. 1)
						(50 Marks)
2.a)	Compare the characteri	istics of F	PN junc	tion diode, Zene	r Diode and Tu	,
2.a) b)	Compare the characteri For a Ge diode, the I ₀	istics of F =2μΑ ar	PN junc	tion diode, Zene voltage of 0.26V	r Diode and Tu / is applied. C	innel diode.
b)	For a Ge diode, the I ₀ forward and reverse dy	₀ =2μA ar	nd the v	voltage of 0.26V values at room	/ is applied. C temperature.	unnel diode. Calculate the
•	For a Ge diode, the Io forward and reverse dy	=2μA ar namic re	nd the v sistance OR	voltage of 0.26V values at room	is applied. C temperature.	annel diode. Calculate the
b)	For a Ge diode, the Io forward and reverse dy	=2μA ar namič re or transiti	nd the visitance OR ion capa	voltage of 0.26V e values at room iiiiiii acitance of a diod	is applied. C temperature.	Calculate the
b)	For a Ge diode, the Io forward and reverse dy	=2μA ar namič re or transiti	nd the visitance OR ion capa	voltage of 0.26V e values at room iiiiiii acitance of a diod	is applied. C temperature.	unnel diode. Calculate the
3.a) b)	For a Ge diode, the Io forward and reverse dy	n=2μA ar rnamic re cor transiti I Zener B	ond the value of the sistance	voltage of 0.26V e values at room acitance of a diod wns.	/ is applied. C temperature. :	innel diode. Calculate the [5+5]
b) 3.a)	For a Ge diode, the Io forward and reverse dy	n=2μA ar rnamic re cor transiti I Zener B	ond the value of the sistance	voltage of 0.26V e values at room acitance of a diod wns.	/ is applied. C temperature. :	innel diode. Calculate the [5+5]
3.a) b)	For a Ge diode, the Io forward and reverse dy	=2μA ar rnamic re or transiti I Zener B	ond the visistance OR ion capa reakdor	voltage of 0.26V e values at room acitance of a diod wns.	is applied. Comperature.	[5+5] n necessary
3.a) b)	For a Ge diode, the Id forward and reverse dy	n=2μA ar namic re or transiti I Zener B of Full W	ond the visistance OR ion capa reakdor ave Rec	voltage of 0.26V values at room acitance of a dioc wns. ctifier with Induction of the control	is applied. Comperature.	[5+5] n necessary
3.a) b)	For a Ge diode, the Ic forward and reverse dy	n=2μA ar namic re or transiti I Zener B of Full W	ond the visistance OR ion capa reakdor ave Rec	voltage of 0.26V values at room acitance of a dioc wns. ctifier with Induction of the control	is applied. Comperature.	[5+5] n necessary
3.a) b)	For a Ge diode, the Id forward and reverse dy	n=2μA ar namic re or transiti I Zener B of Full W	ond the visistance OR ion capa reakdor ave Rec	voltage of 0.26V values at room acitance of a dioc wns. ctifier with Induction of the control	is applied. Comperature.	[5+5] n necessary
3.a) b)	For a Ge diode, the Id forward and reverse dy in the control of Explain Avalanche and Explain the operation of diagrams. A diode whose internal 110V (R.M.S) source of Peak Load Current ii) DC Load Current	n=2μA ar namic re or transiti I Zener B of Full W	ond the visistance OR ion capa reakdor ave Rec	voltage of 0.26V values at room acitance of a dioc wns. ctifier with Induction of the control	is applied. Comperature.	[5+5] n necessary
3.a) b)	For a Ge diode, the Ic forward and reverse dy	=2μA ar matmic re or transiti l Zener B of Full W l resistant of supply	od the visistance OR ion capa ireakdov ave Rec ce is 20 Calcul	voltage of 0.26 Very values at room acitance of a diod wns. ctifier with Induction of the control of the cont	is applied. Comperature.	[5+5] n necessary
3.a) b)	For a Ge diode, the Id forward and reverse dy	nathic re reasting transition of Full W resistant of supply	ond the visistance OR ion capa reakdov ave Rec ce is 20 Calcul to give	voltage of 0.26 values at room acitance of a dioc wns. ctifier with Induce of the control of t	is applied. Contemperature. temperature. de. ction filter with we to a 100Ω	[5+5] n necessary
3.a) b)	For a Ge diode, the Ic forward and reverse dy	=2μA ar mathic resor transitions of Full War in Supply No load of Full War in Supply	ond the visistance OR ion capa ireakdor ave Rec ce is 20 . Calcul to given OR	voltage of 0.26 Very values at room acitance of a diod wns. ctifier with Induction of the control of the cont	is applied. Contemperature. temperature. de. ction filter with were to a 1000 ssary graphs.	[5+5] n necessary load from
b) 3.a) b) 4.a) b)	For a Ge diode, the Id forward and reverse dy	=2μA ar mathic resor transition of Full Walls and Supply No load of Full Walls and Supply No load of Full Walls and Supply No load of Full Walls and Supply	ond the visistance OR ion capa ireakdor ave Rec ce is 20 . Calcul to given OR	voltage of 0.26 Very values at room acitance of a diod wns. ctifier with Induction of the control of the cont	is applied. Contemperature. temperature. de. ction filter with were to a 1000 ssary graphs.	[5+5] n necessary load from

voltage of adequate magnitude and 50Hz frequency by wave rectification. The LC filter is used along the rectifier. Design the bleeder resistance, turns ratio of

transformer, VA rating of transformer and PIV rating of diodes.

6.a)	Derive Emitter Efficiency the relation be	ciency, Trans etween them.	port factor and lai	rge signal curre	Ingen et
b)	Explain how transist		n amplifier?		[5+5]
7.a)	Explain the operation		0 = 0	JT and its inpu	t and output
b)	characteristics briefl Explain about Punch	y. through and	Base width modula	ation.	[[5+5]
8.a)	What is Biasing? I	Explain the r	need of it. List or	at different type	es of biasing
b)	methods. In a Silicon transisto				
	$V_{CC}=9V$, $R_C=3K\Omega$, Find the operating p	$R_B=8K\Omega$, $\beta=5$	50, V _{BE} =0.7V. ility factor:		[5#5]
9.a) b)	Derive the expression Explain in detail about	on for stability out Thermal R	factor of self bias	circuit. nal Resistance.	[5+5]
10.a)	Why we call FET as For the Common So	urce Amplific	er, calculate the val	ue of the voltage	e gain, given
	i) r_d =100K Ω , R_L =10 ii) If C_{DS} =3pF, deter	rmine the outp	out impedance at a	signal frequency	of 1 MHz. [5+5]
-11:a)	Define DC Drain	resistance. A	OR C Drain Resistance	ce, Amplificatio	n Factor and
44 (344)	** 1***	18 4737	44 8444	10 2004	47 8578
b)	What are the value	s of I _D and g			
	dell'e difein.	s of I _D and g			are given as
	What are the value	s of I _D and g			are given as
	What are the value	s of I _D and g spectively?	$t_{\rm m}$ for $V_{\rm GS} = -0.8 V_{\rm m}$		are given as
	What are the value	s of I _D and g spectively?	$t_{\rm m}$ for $V_{\rm GS} = -0.8 V_{\rm m}$		are given as
b)	What are the value 12.4mA and -6V res	s of I _D and g spectively?	$V_{GS} = -0.8V_{GS}$	V if I_{DSS} and V_{P}	are given as [5+5]
	What are the value	s of I _D and g spectively?	$t_{\rm m}$ for $V_{\rm GS} = -0.8 V_{\rm m}$		are given as
b)	What are the value 12.4mA and -6V res	s of I _D and g spectively?	$V_{GS} = -0.8V_{GS}$	V if I_{DSS} and V_{P}	are given as [5+5]
	What are the value 12.4mA and -6V res	s of I _D and g spectively?	$V_{GS} = -0.8V_{GS}$	V if I_{DSS} and V_{P}	are given as [5+5]
b)	What are the value 12.4mA and -6V res	s of I _D and g spectively?	$V_{GS} = -0.8V_{GS}$	if I _{DSS} and V _P	are given as [5+5]
	What are the value 12.4mA and -6V res	s of I _D and g spectively?	$V_{GS} = -0.8V_{GS}$	if I _{DSS} and V _P	are given as [5+5]

en en

: : . . .

15

: (*)

i fig.

Code No: 223AC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Pharmacy II Year I Semester Examinations, November/December-2016 STATISTICAL METHODS AND COMPUTER APPLICATIONS

Time: 3hours Max.Marks:75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	question carries to marks and	may mave	и, о, о	45 540	question				
		PART- A					(25 Ma	arks)	
1.a)	Define Primary data and Seco	ndary data	, 7 H		21		9	[2]	
b)	Describe the distribution of ar	ea under t	he Nori	nal cu	rve.			[3]	
c)	Write the properties of F-distr	ibution.						[2]	
d)	Write the uses of ANOVA.							[3]	
e)	Define Random sampling.		1	4 - 1 40	. domina	d dog	ion	[2] [3].	
f) g)	Write advantages and disadva	ntages of	comple	tery ra	nuomize ad effect	a ues. 37		[2]	
g)	Which view can be used to ing Briefly discuss about the slide	controls	in MS I	mman Ower	Point?	3.;		[3]	
h) i)	What are the reserved words i	n SOL?	III IVIO I	0 11 01	7 011101			[2]	
j)	Give the examples of Databas	e package	es?					[3]	
37									
	mi ili						(50 M		
2.a)	Describe the different types o	f diagram:	matic re	epresei	ntation o	f stati	stical d	lata.	
b)	If the probability that an indi	vidual su	ffers a l	oad re	action fr	om a	certain	injecti	on is
	0.001, determine the probabil	ity that or	ut of 20	000 inc	lividuals	more	tnan 2	11101V1 [5±5]	auais
	suffer a bad reaction.	0	R		y-115)	200		[5+5]	
2 3	The chance that doctor A wil	U diamose	K dices	ace X	correctly	is 60	% The	e chanc	e that
3.a)	a patient will die by his trea	tment afte	er corre	ct dia	enosis is	40%	and th	ne chan	ce of
	death by wrong diagnosis is	70%. A 1	patient	of doc	etor A, v	vho h	ad dise	ease X,	died.
	What is the chance that his di	sease was	diagno	sed co	rrectly?				
b)	The heights of mothers and d	aughters a	are give	n in th	ie follow	ing ta	ible, fro	om that	table
	of regression estimate the exp	pected ave	erage he	eight o	f daught	er wh	en the	neight	of the
A	mother is 64.5 inches.							[5+5]	
	Height of the mother	62	63	64	64	65	66	68	70
	Height of the mother (in inches)	02	03	07					
	Height of the daughter	64	65	61	69	.67	68	71	65
274	Treight of the daughter	0'		1 -	100			Tool Star	

4.a) Explain the two-way classification technique of analysis of variances.

(in inches)

The number of automobile accidents per week in a certain community are as follows; 12, 8, 20, 2, 14, 10, 15, 6, 9, 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period? (Table value Is 16.9).

[5+5]

5.a) The following figures relate to the number of trees planted in five different areas by

four persons.

	Number of trees					
Area	Α	В	С	D		
1	44	38	47	36		
2	46	40	52	43		
3	34	36	44	32		
4	43	38	.46	33		
5	38	42	49	39		

Is there a significant difference in the efficiency of these persons? (Table value at 5% is 3.49)

b) Explain the student t-distribution, its properties and applications.

[6+4]

6.a) What is statistical quality control? Explain its purpose and advantages.

Three varieties A, B, C of a crop are tested in CRD with four replications, the plot yield in pounds are as follows. Analyze the experimental yield and state your conclusion $(F_{0.05}(2,6) = 5.14, F_{0.05}(3,6) = 4.76)$ [6+4]

A 6	C 5	A 8	В
13 55			9
C 8	A 4	B 6	C
			9
В 7	В 6	C 10	A
			6

OR

What is Latin square design? Under what conditions can this design are used? Discuss briefly the advantages and disadvantages of Latin square design.

b) The following table gives the number of defects in a sample, construct appropriate

control chart with the control limits and comment on the process.

11

1.5

 8
 9
 10

 10
 17
 13

8. Create 4 Slides on annual day of your college and write down the steps to perform the following:

25

.10

a) Give Header and Footer

...9

Sample number

Number of Defects

b) Give Background Color

15.

c) Insert Picture from Clip Art

d) Insert Slide Numbers

12

[10]

OR

Write formulas for the operations (a) - (d) based on the spreadsheet given below

along with the relevant cell address:

	A	В	C	D	E	F	G
1	SNO	Name	Science	Maths	Computers	Total	Average
2	,1-,	Swati	70	,80	87		100 0 7-
3	2	Shruti	90	98	89		Teace Trans
4	3	Neelu	90	90	98	**	
5	4	Rosy	60	76	79	a	==
6	5	Shreya	50	45	67		2000 200
7	Max	im		:51		Total Tr	
8	Total						

6.		a) To calculate the student and display to b) To calculate the a c) To calculate the h d) To calculate the to it in cell C8.	hem in column verage marks fo ighest marks in	F. r each student an Computers and d	d display them is lisplay it in cell E	n colümni.G.	
	10,	Give examples to ex	plain "INSERT	", "DELETE", " OR	SELECT" querie	es in SQL? [[10]]. s? [10]	Street Sec
	11.	Give examples to ex	plain the compl	iter applications	in cimical studies	5; [10]	
100	26			00O00	25		
i.		26	ME		27772 - 1277 1277 - 1277 1277 - 1277	26	2001 pp 1600 fe
E	25			26	25	26	
Ġ	200, 100 200, 200, 200, 200,		See Pro-	26			
		25.5	And Park	26	2£	200 200 200 200 200 200	
i fili.	X.E.		24	25.			
16	25		26		ZS	26	e e

[5+5]

Code No: 113BK

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 FLUID MECHANICS

(Common to CE, CEE) Max. Marks: 75 Time: 3 Hours **Note:** This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART- A (25 marks) What is the difference between dynamic viscosity and kinematic viscosity? State 1.a) their units of measurements. List out the examples where surface tension effects play a prominent role. [3] b) (c) What are the methods of describing fluid flow? Explain path line and streak line. d) What is Euler's equation of motion? How will you obtain Bernoulli's equation from it? Name the different forces present in a fluid flow. For the Eulers's equation of f) motion, which forces are taken into consideration? [2] Define: laminar boundary layer and boundary layer thickness: Derive an expression for the displacement thickness. [3] h) How will you determine the loss of head due to friction in pipes by using Darcy's i) What do you understand by terms: Major energy loss and minor energy losses in j) [3] pipes? PART-B (50 Marks) Find the expression for the force exerted and centre of pressure for a completely 2.a) submerged inclined plane surface. Can the same method be applied for finding the resultant force for a curved surface immersed in the liquid? If not, why? b) The opening in the dam is 3 m wide and 2 m high. A vertical sluice gate is used to cover the opening. On the upstream of the gate, the liquid of sp. gr. 1.5, lies upto height of 2.0 m above the top of the gate, whereas the downstream side, the water is available upto a height of the top of the gate. Find the resultant force acting on the gate and position of centre of pressure. Assume that the gate is higher at the bottom. OR Share 3.a) What is the difference between U-tube differential manometers and inverted U-tube deferential manometers? Where are they used? An inverted differential manometers containing an oil of sp. gr. 0.9 is connected b)

to find the difference of pressure at two points of a pipe containing water. If the

manometer reading is 40 cm, find the difference of pressures.

A fluid:flow is given by:....

$$V = xy^{2}i - 2yz^{2}j - \left(zy^{2} - \frac{2z^{3}}{3}\right)k$$

Prove that it is a case of possible steady incompressible fluid flow. Calculate the velocity and acceleration at the point [1, 2, 3].

- Define rotational and irrotational flow. The stream function and velocity potential for a flow are given by $\psi = 2xy$, $\Phi = x^2 y^2$. Show that the conditions of continuity and irrotational flow are satisfied. [10]
- A 20 × 10 cm venturimeter is provided in a vertical pipe line carrying oil of sp. gr. 0.8, the flow being upwards. The difference in elevation of the throat section and entrance section of venturimeter is 50 cm. The differential U-tube mercury manometer shows a gauge deflection of 40 cm. calculate:
 - a) the discharge of oil, and

OR

- A conical tube of length 3.0 m is fixed vertically with its smaller end upwards. The velocity of flow at the smaller end is 4m/s while at the lower end it is 2 m/s. The pressure head at the smaller end is 2.0 m of liquid. The loss of head in the tube is $0.95(v_1 v_2)^2/2$ g; where v_1 is the velocity at the smaller end and v_2 ; at the lower end respectively. Determine the pressure head at the lower end. Flow takes place in downward direction. [10]
- 8. Find the ratios of displacement thickness to momentum thickness and momentum thickness to energy thickness for velocity distribution in the boundary layer given

by
$$\frac{u}{U} = 2(y/\delta) - (y/\delta)^{2}$$

Where u = Velocity in the boundary layer at the distance y

U =Free-stream velocity

 δ = Boundary layer thickness.

[10]

OR

A kite weighing 0.8 kgf (7.848 N) has an effective area of 0.8 m². It is maintained in air at an angle of 10⁰ to the horizontal. The string attached to the kite makes an angle of 45⁰ to the horizontal and at this position the value of coefficient of drag and lift are 0.6 and 0.8 respectively. Find the speed of the wind and tension of the spring. The density of air is 1.25 kg/m³. [10]

- For the two cases in the flow in a sudden contraction in a pipeline and flow in a sudden expansion in a pipeline, draw the flow pattern, piezometric grade line and total energy line.
- b) A horizontal pipe-line 50 m long is connected to a water tank at one end and discharge freely into the atmosphere at the other end. For the first 30 m of its length from the tank, the pipe is 200 mm diameter and its diameter is suddenly enlarged to 400 mm. The height of water level in the tank is 10 m above the centre of the pipe. Considering all minor losses, determine the rate of flow. Take f = 0.01 for both sections of the pipe.

OR

- Three pipes of different diameter and different lengths are connected in series to make a compound pipe. The ends of the compound pipe are connected with two tanks whose difference of water level is H. If coefficient of friction for these pipes is same, then derive the formula for the total head loss, neglecting first the minor losses and then including them.
 - b) A pipe of diameter 300 mm and length 1000 m connects two reservoirs, having difference of water levels as 15. Determine the discharge through the pipe. If an additional pipe of diameter 300 mm and length 600 mm is attached to the last 600 m length of the existing pipe, find the increase in the discharge. Take f = 0.02 and neglect minor losses.

---00O00---

 26
 26
 26
 26
 26
 26

 26
 26
 26
 26
 26
 26

 26
 26
 26
 26
 26
 26

 26
 26
 26
 26
 26
 26

 26
 26
 26
 26
 26
 26

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November/December - 2016 DIGITAL LOGIC DESIGN

(Computer Science and Engineering)

Max. Marks: 75 Time: 3 Hours Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART- A (25 Marks) What is the simplest technique for detecting errors? [2] 1.a) What are the basic operations in Boolean algebra? [3] b) [2] What is a flip-flop? What are its functions? c) d) ..[3] Define maxterm and minterm. :e) What is a ripple carry-adder? [3] Write truth table for 2×4 priority encoder. f) [2] g) Compare synchronous and Asynchronous counters. What are the various methods used for triggering flip-flops? [3] h) [2] What are types of ROM? i) What is PLA? PART-B (**50 Marks**) Solve for x: 2.a) i) $(367)_8 = (x)_2$ ii) $(378.93)_{10} = (x)_8$ iii) $(B9F.AE)_{16} = (x)_8$ (iv) $(16)_{10} = (100)_x$... b) Convert (163.875)₁₀ to binary, octal, hexadecimal. OR :.... What are universal gates? Realize AND, OR, NOT, XOR gates using universal 3.a) gates. Obtain the canonical SOP form of the following functions. b) [5+5]i) Y (A,B) = A + Bii) Y(A,B,C,D) = AB + ACD. ···4.ä) Simplify the expression $Y = \sum m(7,9,10,11,12,13,14,15)$ using the k-map method. Simplify the following Boolean function: [5+5] $F(A,B,C,D) = \sum m(1,3,7,11,15) + \sum d(0,2,5).$ Simplify the expression $Y = \pi(7,9,10,11,12,13,14,15)$ using the k-map method. 5.a) Simplify the expression $Y = m_1 + m_5 + m_{10} + m_{11} + m_{12} + m_{13} + m_{15}$ using the k-map b) [5+5]method. Draw the schematic diagram and truth table for half adder. Explain the design 6.a) approach for half adder using universal gates. Draw the logic diagrams with relevant expressions. b) [5+5]Design, draw and explain a 4-bit binary carry look ahead adder.

Describe the operations performed by the following logic circuits with an :.7,a) example: i) Comparator ii) Decoder iii) Encoder. Explain the operation of a 3-to-8 decoder 74LS138. Realize 4-to-16 decoder b) using two 3-to-8 decoders. Realize D-FF and T-FF using JK-FF. Draw the logic diagrams with their truth 8.a) tables. Deduce the design procedure for sequential logic circuits and give the Б) [5+5]classification of sequential logic circuits. OR Design, draw and explain a synchronous MOD-12 down-counter using 9.a) j-k flip-flop, Design, draw and explain a 4-bit ring counter using D-flip flops with relevant (b) [5+5]timing diagrams. Give the logic implementation of a 32×4 bit ROM using decoder of suitable size. 10.a) Implement the following Boolean function with PLA: b) [5+5] $F(A,B,C) = \sum_{i=1}^{n} m(1,5,6,7)...$ 26 OR :::: 1.1 Derive the PLA programming table for the combinational circuit that squares a 11.a) 3-bit number. Draw the relevant logic diagram. A ROM chip of 4,096 × 8 bits has two chip select inputs and operates from a 5-volt power supply. How many pins are needed for the integrated circuit package? Draw and explain the relevant block diagram. --00O00--

Code No: 113BU

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 SWITCHING THEORY AND LOGIC DESIGN

(Common to ECE, EIE)

Time:	3 Hours	(Common	to Ecz, Etz)	Max. M	arks: 75
Nöte:	This question paper con Part A is compulsory w Part B consists of 5 to question carries 10 mark	hich carries 2 Units. Answe	5 marks. Answer al r any one full qu	estion from eacl	
		PA	RT-A	200 200 200 200 200 200 200 200 200 200	(25 Marks)
1.a) b) c) d) e) f) g) h) i) j)	Convert the number AB Show that the dual of the Simplify the expression literals using boolean all What is a decoder? Compefine Sequential circumples classification of Sequential Explain the excitation to Define: i) State Reduction of Compefine C	ne exclusive-Con (A+B') (An gebra. Instruct a 4×16 it and draw the struct of SR and on ii) State of Shift register and limitation	DR is equal to its contact the sequence of the	mplement. D') to minimum 3×8 decoders. Sequential Circu	[2] [3] n number of [2]
		PA	ART-B		(50 Marks)
(2 ₄ a)	Perform the following of i) $AB_{(16)} = ()_{10}$ iii) $456_{(8)} = ()_2$ Perform the following to	ii) 1234 iv) 100 using BCD ari	$4_{(8)} = ()_{10}$ $011001_{(2)} = ()_{16}$ thmetic.	24	
2000		ii)8124	OR	215	[5+5]
b)	Implement the following $F(A,B,C,D) = (A'B+AE)$ Find the complement of i) $(A'B+CD)E'+E$	3')(CD'+C'D)	g functions.	AND gates.	[5+5]
4.a) b)	Simplify the following $F(A,B,C,D) = \Sigma(0,1,2,3,0)$ Realize Ex-OR gate usi	,4,6,9,10)+d(7	,11,12,13,15)		[5+5]
5,,,,	Design a code converte	r that convert		4-bit binary num	ber. [10]

What is race around condition? How does it get eliminated in a Master-slave JK flip-flop?

7. Draw a neat diagram of positive edge triggered SR flip-flop and explain its operation.

Design a Finite state machine which can detect a sequence of 1011 (Overlapping output) using JK Flip-flops.

OR

9. Design a synchronous counter which counts 0,2,4,6,8,0,2.... Sequence. Use JK Flip-flops in the design. [10]

10. Reduce the number of states in the following state table using Partition method. [10]

PS	NS		Output		
	x=0	x=1	x=0	x=1	
A Property	H	C	<u>u</u> 1	Q	
В	:C :	D	0	11.	
C	Н	В	0	0	
D	F	Н	0	0	
E	C	F	0	1	
F	F	G	0	0	
G	G :	С	£ 1	.0	
Н	'A'	C	1	0	

OR

Design a Weighing machine and its control logic by drawing ASM chart and realize the same using decoder, MUX and D flip flops. [10]

---00O00--

Code No: 113BY

B.Tech II Year I Semester Examinations, November/December - 2016 ELECTROMAGNETIC FIELDS

(Electrical and Electronics Engineering)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

	PART- A		(25 Marks)
1.a)	Define electric field intensity.		[2]
b)	Give the statement of Coulomb's law.		[3]
c)	Define polarization.		[2]
d)	Define Electric dipole.		[3]
:e)	Write the formula of ampere's circuital Law.		[2]
f)	What is Maxwell's second equation?	Spine Des	[3]
g)	What is scalar magnetic potential?		[2]
h)	What is magnetic dipole moment?		[3]
i)	Define displacement current.		[2]
i)	What is statically and dynamically induced emfs?	1,000 000	[3]
17	11 1140 15 3044,5042)		
	PART-B		
			(50 Marks)

(50 Marks)

2.a) State and explain Gauss's law.

Four concentrated charges $Q_1 = 0.3 \,\mu c$, $Q_2 = 0.2 \,\mu c$, $Q_3 = -0.3 \,\mu c$, $Q_4 = 0.2 \,\mu c$ are located at the vertices of a plane rectangle. The length of rectangle is 5 cm and breadth of the rectangle is 2 cm. Find the magnitude and direction of resultant force on Q_1 .

OR

- 3.a) If $D = [2y^2 + z]a_x + 4xy a_y + xa_z \text{ C/m}^2$, find:
 - i) The volume charge density at (-1, 0, 3)
 - ii) The flux through the cube defined by $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.

iii) The total charge enclosed by the cube.

Infinite uniform line charge of 5n C/m lie along the (positive and negative) x and y axes in free space. Find E at i) $P_A = (0,0,4)$ ii) $P_B = (0,3,4)$. [5+5]

.4.a) State and explain the continuity equation.

Parallel plate capacitor consists two square plate metals with 500 mm side and separated by 10 mm. A slab of sulphur (= = 4) 6 mm thick is placed on the lower plate and air gap of 4 mm. Find the capacitance of a capacitor. [5+5]

OR

- Derive the boundary conditions between a conductor and a dielectric.
 - b) A parallel plate capacitor consists of two square metal plates of side 600 mm and separated by a 12 mm. A slab of Teflon with $\varepsilon_r = 3$ and 5 mm thickness is placed on the lower plate leaving an air gap of 8 mm thick between it and upper plate. If 200 V is applied across the capacitor, find D, E, and V in Teflon and air. [5+5]
- 6.a) Deduce the relationship between magnetic flux, magnetic flux density and magnetic field intensity.
 - b) A square conducting loop 4 cm on each side carries a current of 10 A. Calculate the magnetic field intensity at the center of the loop. [5+5]

OF

- 7.a) State and Explain Biot-Savart's law.
- A circuit carrying a direct current of 10A forms a regular hexagon inscribed in a circle of radius of 1.5 m. Calculate the magnetic flux density at the centre of the hexagon. Assume the medium to be free space. [5+5]
 - 8.a) Derive the Neumann's formulae for the calculation of self inductance of a solenoid and toroid.
 - b) Explain about the Vector Poisson's equation for steady magnetic field. [5+5]

OR

- 9.a) A two-conductor transmission line is made up of conductors, which are separated by a distance of 2 meters. The radius of each conductor is 1 cm. The medium is air. Compute the exact value of inductance of each conductor per km length.

 Derive the formula used.
 - b) Discuss the characteristics and applications of permanent magnets. [5+5]
- 10.a) State and derive the Maxwell's Fourth Equation.
- b) The parallel plate capacitor with plate area of 5cm^2 and plate separation of 3mm has a voltage of $50 \sin 10^3$ t V applied to its plates. Calculate the displacement current assuming $\epsilon = 2\epsilon_0$.

OR

- 11.a) Obtain an expression for the displacement current density.
 - b) Let the current I=80 t A be present in the a_z direction on the Z axis in free space within the interval -0.1 < z < 0.1 m. Find A_z at P(0,2,0). [5+5]

---00000---

Code No: 53015

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to CE, ME, AME, PTE)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) Draw the circuit diagram for series connection of resistors and give the detailed analysis.

b) Find the current 'I' in the circuit shown in figure.

[8+7]

2.a) What is a Generator? Explain the principle of operation of DC generator in detail.

b) A 220 V DC series motor is running at a speed of 1500 rpm and draws 50A. Calculate at what speed the motor will run when developing $3/4^{th}$ of the torque. Total resistance of armature and field is 0.2Ω . Assume that the magnetic circuit is unsaturated. [8+7]

3.a) What are the types of losses in transformer? Explain in detail.

b) A single phase 200V/50V, 40 Hz transformer has a maximum core flux density of 1T and effective cross sectional area of 0.025 m². Determine the number of secondary turns. [8+7]

4.a) Define regulation in alternators. How it can be calculated.

b) What are the conditions to be satisfied for the production of torque in induction motors? Explain [8+7]

5.a) What are the instruments that available to measure electric current? Explain their classification

b) What are the merits and demerits of permanent magnet moving coil instruments? Explain. [8+7]

6.a) Explain various applications of PN Junction diodes.

The supply voltage of a single phase half wave rectifier with resistive load of 50Ω is 230V, 50 Hz. Assuming a voltage drop of 1V across the diode when it is turned ON, determine the RMS load voltage and RMS load current [5+10]

	7.a) b)	Explain in detail at Draw the structure	and operation of	an SCR.	r. 216	[8+7]	, , ,
. 542	8.a) b)	Explain the structu How voltage magn	re of Cathode Ra itude and phase i	is measured using		[7+8]	
			0	0O00			
100		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		25	26	26	Siere
tyž. Lak	25	26	26	26		26	Jeog Jeog
.5						25	1477
Í	26	26			26	26	
:65			dina ini	year year			
i E	26		26		26	26	,*** 55
i fi	2003 200 200 1003 200 1003		Ző		26		
1	26	era kan			ZE		

Code No: 53009:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 ELECTRONIC DEVICES AND CIRCUITS

(Common to EEE, ECE, CSE, EIE, IT, MCT, ETM)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

	製造 型	
1.a) (b)	Explain how the PN junction diode V-I characteristics are depertemperature. Explain about Avalanche and Zener Breakdowns in PN junction diode.	dent on [5+5+5]
c)	Explain Load Line Analysis of PN junction diode.	[3/3/5]
2.a)	Explain the operation of full wave rectifier and derive the exprese	ssion for
b.)	Explain how Zener diode work as a voltage regulator? Compare L-Section Filter and π - Section Filter.	[5+5+5]
3.a) b) c)	Explain the regions of operation of the BJT. Derive the relation between α , β and γ . The reverse leakage current of the transistor when in CB configuration while it is 12μ A when the same transistor is connected in CE configuration. Determine α , β .	is 0.5μA iguration. [5+5+5]
4.a)	What is Biasing? Explain the need of it. List out different types of methods.	of biasing
b)	Derive the operating point using AC and DC load lines.	[8+7]
5.a)	Draw the circuit diagram of CE amplifier using hybrid parameters and	derive the
b)	expression for A _I , A _V , R _i , R _O . Compare CE,CC and CB configurations.	[8+7]
6.a) b)	Derive the relation between μ , g_m and r_d . Describe the construction and working principle of Enhancement a depletion mode MOSFET and draw its characteristics.	node and [7+8]
7.a)	Describe the operation of common drain amplifier and derive the eq voltage gain.	uation for
b)	With neat diagram explain the construction, working characteristics of its equivalent circuit.	.[7#0]
8.a)	What is tunneling phenomena? Explain the principle of operation of tu- with its characteristics.	
h)	Explain the operation of photo diode and draw its characteristics.	[8+7]

---ooOoo----

Code No: X0424

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016

ELECTRICAL TECHNOLOGY

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

1.a) Derive an expression for the emf generated in a d.c. generator.

b) An 8 pole lap wound dc generator has 960 conductors, a flux of 40 milliwebers and is driven at 400 rpm. Find induced emf? [8+8]

2;a) Explain the principle of operation of DC motor.

b) 15A 240 V series motor takes a 40 A and gives its rated output at 1500 rpm. Its resistance is 0.3Ω. Find what resistance must be added to obtain rated torque.

(i) at starting (ii) at 1000 rpm. [8+8]

3.a) "Transformer is a constant flux device". Justify the statement.

A 50 KVA, 3300/230V single phase transformer has a primary resistance and reactance of 3.45 and 5.40 ohms respectively. The secondary resistance and reactance are 0.0085 and 0.014 ohms respectively. Determine the Equivalent impedance referred to both primary and secondary. [8+8]

4.a) Explain various losses in transformer.

A 220/440 V, 10 KVA, 50 Hz single-phase transformer has at full-load, a copper loss of 120 W. If it has an efficiency of 98% at full-load and unity p.f determine the iron losses. What would be the efficiency at half full-load, and 0.8 p.f lagging?

[8+8]

(5.a) Explain the principle of operation of a 3 phase induction motor.

b) A 3-phase, 6-pole, 50 Hz induction motor develops 4 kW including friction and windage losses at 950 rpm. If the stator loss is 250 W. Find the slip of the induction motor. [8+8]

6.a) Derive an expression for the winding factor of an alternator.

b) Explain the principle of operation of a 3 phase alternator. [8+8]

7. Write notes on the following:

- a) AC Servomotor
- b) Stepper Motors.

[8+8]

8. Explain the construction and operation of Permanent Magnet Moving Coil instruments with a neat diagram. [16]

---00O00---

With an example explain about Kirchoff's laws. -3.a) Using Nodal analysis, find the voltage 'V' in the circuit below shown in figure 2. Б) [5+5]100V 60V **4A** 0 25€ 40Ω 200 5A Figure: 2 Derive the expression for the average value and form factor of a sinusoidal waveform. 4.a) In the circuit shown below in figure 3, if the power consumed by the 5Ω resistor is 20 W, Find the power factor and reactive power of the circuit w = 100 rad/sec. [5+5] 10Ω 5Ω $v = 50 \cos \omega t$ Figure: 3 Derive the relationships for real and reactive powers in a series RL circuit with 5.a) sinusoidal excitation. [5+5]Find the RMS voltage of the signal below in figure 4. b) e(t) A

Figure: 4

0

- A

R15

Code No: 123BN

*:::::JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.... Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A **(25 Marks)** Give the truth table for the propositional formula 1.a) [2] $(P \leftrightarrow {} \sim Q) \to (P \land Q)$ Write the sentence "It is not true that all roads lead to Rome" in the symbolic form. [3] b) c) Define lattice. d):What is a monoid?
e)How many words of three distinct letters can be formed from CAKE?[3][2] Give the disjunctive rule for counting problem. [3] What is the closed form expression of the sequence $a_n = 9.5^n$, $n \ge 0$? [2] Find the coefficient of x^9 in $(1 + x^3 + x^8)^{10}$. [3][2][3] j)... Define a spanning tree.

PART - B **(50 Marks)**

Obtain the principal disjunctive normal form of the following formula

$$P \lor (\neg P \to (Q \lor (\neg Q \to R)))$$

b) "Verify whether the proposition $((P \lor \neg q) \to "r) \leftrightarrow s \lor \neg (((P \lor \neg q) \to r) \leftrightarrow s)$." [5+5]

OR

- Show that $(\forall x)(p(x) \land Q(x)) \rightleftharpoons ((\forall x)(p(x) \land (\forall x)(Q(x)))$ is a logically valid statement. 3.a)
 - Show the following using the automatic theorem.

ii)
$$P \land \neg P \land Q \Rightarrow R$$

- Show that the functions $f: R \to (1, \infty)$ and $g: (1, \infty) \to R$ defined by $f(x) = 3^{2x} + 1$, 4.a) $g(x) = \frac{1}{2} \log_3(x - 1)$ are inverses.
 - b). Prove that the transitive closure R^+ of a relation R on a set A is the smallest transitive £ [5+5] relation on A containing R.

- Let G is a group, $a \in G$. If O(a)=n and m/n then prove that $O(a^m) = \frac{n}{n}$. 5.a)
 - Let S is a semi group. If for all $x y \in s$, $x^2y = yx^2$ prove that S is an abelian group.

is to receive more than one book? How many different outcomes are possible from tossing 12 similar dice? [5+5]Find the mid-term of $\left(2x - \frac{1}{3x}\right)^{10}$. Solve $a_{n+2} - 6a_{n+1} + 9a_n = 3.2^n + 7.3^n$ for $n \ge 0$ Where $a_0 = 1$, $a_1 = 4$. 8.a) Solve the following recurrence relation by substitution b) $a_{n} = a_{n-1} + 3\tilde{n}^{2} + 3n + 1 Where : a_{0} = 1.$ OR [5+5] Solve the recurrence relation $a_{n+2}^2 - 5a_{n+1}^2 + 6a_n^2 = 7n$ for $n \le 0$, given $a_0 = a_{150}$ 9.a) Find a general expression for a_n using generating functions b) [5+5] $a_n - 7a_{n-1} + 16a_{n-2} - 12a_{n-3} = 0, n \ge 3.$ 10:a) Let G be the non directed graph of order 9 such that each vertex has degree 5 or 6. Prove that atleast 5 vertices have degree 6 or atleast 6 vertices have degree 5. b) Determine the number of edges in: [5+5]ii) K_{m,n} i) K_n OR 11,a). Using depth first search method, determine the spanning tree T for the following graph with e as the root of T. Give an example graph which is Hamiltonian but not Eulerian. [5+5]---00000----

6.a):How many ways are there to distribute 12 different books among 15 people if no person

Code No: 123B.I

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2016 STRENGTH OF MATERIALS-I

(Common to CE, CEE)

Time: 3 Hours

Max. Marks: 75

(25 Marks)

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit, Each question carries 10 marks and may have a, b, c as sub questions.

Define Longitudinal strain and Poission's ratio. [2] 1.a) A circular bar of diameter 50mm is subjected to a tensile force of 120kN. Find b) [3] longitudinal strain and lateral strain, Take 'E' = 200Gpa and 1/m = 0.3. [2] Define point of contra flexure. c) :d) Draw SFD and BMD for a Cantilever beam of span 3m subjected to point load of 50kN at its free end. Sketch the Bending stress and Shear stress distribution across the depth of a e) [2] circular section. [3] List out the assumptions made in the derivation of bending equation. f)

[2] Define maximum principal stress theory. g)

h) [3] Define principal planes and principal stresses.

[2] Define Conjugate beam. i)

Calculate slope and deflection of a cantilever beam span 'L' subjected to load 'W' j) at free end, Use moment area method. [3]

(50 Marks)

A steel bar 300mm long and 30mm×30mm cross section, is subjected to a tensile 2.a) force of 150kn in the direction of its length. Determine the change in volume. Take 'E' = 200 Gpa and 1/m = 0.3.

A hammer is having a mass of 10 kg falls from a height of 1.5 m on a 50 mm cube b) iron block before coming to rest. Find the amount by which the block will be compressed and the instantaneous stress induced in it. Also find the velocity with which the hammer will strike the block. Take 'E' = 200Gpa.

OR

Rails of 20 m length were laid on the track when the temperature was 20 °C. A gap 3.a) of 1.6 mm was kept between two consecutive rails. At what max temperature the rails will remain stress free? If the temperature is raised further by 15°C, what will be the magnitude and nature of stresses induced in the rails?

A composite bar of length 700 mm is made up of an aluminium of length 400 mm b) and steel bar of length 300 mm. The cross sectional areas of Aluminium and steel bars are of 100 mm \times 100 mm and 50 mm \times 50 mm respectively. Assuming that the bars are prevented from buckling sideways, calculate the compressive force P to be applied to the composite bar that will cause the total length of the bar decease by 0.25 mm. Take modulus of elasticity of Aluminium and steel as [5+5]70 GPa and 200 Gpa respectively.

Derive the relation between rate of loading, Shear force and Bending moment. -4.a) Draw S. F. D and B. M. D for the cantilever beam loaded as shown in figure 1. b) [5+5]30kN/m 100kN/m 3m \vdash 1 m \rightarrow Figure: 1 OR Draw S. F. D and B. M. D for the beam shown in figure 2. [10]5. 20kN/m 100kN 3 m $3 \,\mathrm{m}$ 1m+-Figure: 2 Design the cross section for a beam acted upon by a bending moment of 80kN-m. 6. If width of beam is 230 mm, calculate depth. Take stress f = 10 Mpa. OR An I beam 300 mm deep and 100 mm wide has equal flanges of 10 mm thick top 7. flange and 8mm thick bottom flange is subjected to a shearing force of 200 kN. Draw the shear stress distribution across the depth. Obtain what percentage of shearing force is carried by the web? An element in a plane is subjected to normal stresses $p_1 = 150$ Mpa, $p_2 = 50$ Mpa 8. in two mutually perpendicular directions accompanied by a shear stress q = 40 Mpa. Determine the stresses acting on an element rotated through an angle by 40° clockwise. Also determine the principal stresses and the planes on which [10] they act. [10] Discuss in detail about various theories of failures. 9. A simply supported beam 8 m long carries concentrated loads of 40 kN each -10. at a distance 2 m from the ends. Calculate:

a) Maximum slope and deflection for the beam, and

b) Slope and deflection under each load.

Take: $EI = 1.2 \times 10^4 \text{ kN.m}^2$.

[5+5]

Determine the slopes at the ends and deflection at the mid span section of a beam loaded shown in figure 3 using Conjugate beam method. Take elastic modulus as 'E'. [10]

OR

.-- Code No: 123BW.--

.....JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 **ELECTRICAL CIRCUITS**

(Common to EEE, ECE, ETM)

Max. Marks: 75 Time: 3 Hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A		(25 [:] Marks)
Define canacitance. What is V-I relation of capacitance?)	[2]
What are the properties of super mesh?		[3]
		[2]
		[3]
	200 2000	[2]
What are the circuit variables of a magnetic circuit?	See See	[3]
		[2]
		[3]
		[2]
	222 24	[3]
William Services and the services of the servi	Drien.	
PART-B		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		(50 Marks)
		Define capacitance. What is V-I relation of capacitance? What are the properties of super mesh? Define RMS value. What is the significance of power factor? What is resonance? What are the circuit variables of a magnetic circuit? Define graph. Draw a connected graph and explain. Define Norton's current. What are the limitations of superposition theorem?

Give the detailed classification of independent sources. 2.a)

Using Mesh analysis, find the voltage across 5Ω resistor in the circuit below b) [5+5] shown in figure 1.

Figure: 1 OR

With an example explain about Kirchoff's laws.

Using Nodal analysis, find the voltage 'V' in the circuit below shown in figure 2.

[5+5]

Figure: 2

4.a) Derive the expression for the average value and form factor of a sinusoidal waveform.

In the circuit shown below in figure 3, if the power consumed by the 5Ω resistor is 20 W, Find the power factor and reactive power of the circuit w = 100 rad/sec.

[5+5]

Figure: 3
OR (III)

Derive the relationships for real and reactive powers in a series RL circuit with sinusoidal excitation.

b) Find the RMS voltage of the signal below in figure 4.

···5.a)

[5+5]

Figure: 4

Draw the impedance locus diagram of a parallel RC circuit and explain. ...6.a) For the magnetic current shown in figure: 5, find the current 'I' in the coil needed ·... b) to produce a flux of 5.5 mWb in the air gap. The magnetic circuit has a uniform cross sectional area of 5 cm². Assume the relative permeability of the magnetic material as 3523, neglect leakage and fringing effect. | ← 2 mm 60 cm air gap Figure: 5 OR Explain in detail about Faraday's law of electromagnetic induction. ...7.a) In a series circuit of L=10mH and C=0.01μF and R=50Ω. Calculate the resonant b) frequency and also the impedance at the resonant frequency. What is loop method? Explain the analysis of networks with this method in detail. 8.a) For the graph shown in figure 6, determine the number of branches, sub graphs, b) .·[5+5] trees and draw them. !... Figure: 6 Define Duality. Explain with the help of an example. ...9.a) With the help of an example, explain the procedure of formulating the Basic tie b) [5+5]set matrix.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 PROBABILITY AND STATISTICS

(Common to ME, CSE, IT, MCT, AME, MIE, MSNT)

Time: 3 Hours		ii to ME, C	,		,	Max. Ma	rks: 75	
Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.								
	******		PA	RT- A		1 2 2		
			IA	ICI - 7X			(25 Marks)	
b) If X is a	K e ^{- v} is p.d.f poisson variate formulae for constitution of probability	the two res	p(X = pression	1) = $24 p (X = 3)$ on lines.			[2] [3] [2] ind K. [3]	
					4.5		tion is 15. Find	
the stand f) In a rand maximu	ard error of m om sample of n error with 9	neans. 7200 packa	ges sh	ipped by air f	freight 5		[2] amage. Find the [3]	
h) Consider service t the cashi	eady state. a self servic ime. Suppose er can serve i ecurrent state	that 10 cu n 2 minutes	istome s. Find	rs arrive on t the traffic in	the aver tensity.	age of every	and exponential 30 minutes and [3]	
1) Define r	$x = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$	Of Widico v	Chain					
		is a transmi			atrix, th	en find the va	alues of x, y	
L z	0.4 0.1							
and z.				DADT D			[3]	
				PART- B			(50 Marks)	
2.a)					0]			
x 1	2 3	4 5	6 11k	7 8 13k 15k	9 17k			
$p(x) \mid k$	3k 5k	7k 9k	TIK	13k 15k	171		(400) - 31E	
Then Fin	nd:			21.55		100 per		
i) K	1 a a m							
ii) The I iii) The	variance.							
b) A die is	thrown 8 time	es. If gettin	g a 2 c	or 4 is a succe	ess, find	the probabilit	ty of getting	
i) 4 succ	eesses	ii) $P(x \le 3$)	or iii) P(x	$\leq 2)$.		[313]	
		he students	passe	d. Find the pr	robabili	ty that among	12:	
i) Exact	ly 8 passed. poisson varia			st 4 passed. =1)=3 P(x=2)	. Find:			
	i) $P(x \le 2)$.	io odon mai	DI (11	-, ()			[5+5]	

X	55	56	58	59	60	60	62
Y	35	38	38	39	44	43	44

OF

5. The joint probability density function is given by $f(x, y) = \begin{cases} 10xy^2, & 0 < x < y < 1 \\ 0, & elsewhere \end{cases}$

a) Marginal probability density function for X

b) Marginal probability density function for Y.

[5+5]

6. Bricks made in 2 kilns have graded as I, II and III. The production of Bricks in a particular period was as follows. Determine whether the manager of kiln A justified in claiming that he produces Bricks of a higher quality that of the other one. [10]

kiln	Grade I	Grade II	Grade III
Vila A	24	43	13
KIIII A	21	57	32
Kiln B ::	: 31	37	15547 114

OR

7.a) A Random sample of 300 items is taken from a population whose standard deviation is 18. The mean of the sample is 82 construct 95% confidence interval for the mean.

b) A sample of 900 members has a mean 3.4 cms and S.D 2.81 cms another sample of 500 members has a mean 4.2 cms and S.D 2.1 cms Test the difference between the means. [5+5]

8. Define the terms:

- a) Expected queue length
- b) Waiting time

c) Busy period and Mean arrival rate.

[3+3+4]

OR

9. A maintenance service facility has poisson arrival rates, negative exponential service times and operates and first come first served queue dispelling, breakdown occur on an average of three per day with a range of zero to eight. The maintenance can service on an average six machines per day with a range zero to seven. Find:

(i.i.a) Utilization factor of the service facility.

b) Mean time in the system

c) Expected number of units in the system.

[3+3+4]

10. In a presidential election at the end of June 40% of the voters registered for liberal, 45% for conservative and 15% for independent. Over one month, of the people those who registered for liberal 80% were retained, 15% changed to conservative and 5% to independent. Of the people those who registered for conservative 70% were retained, 20% changed to liberal and 10% to independent. Of the people those who registered for independent. 60% were retained, 20% changed to liberal and 20% to conservative.

a) Write transition probability matrix

b) Find the % of the voters in each category at the end July

c) At the end August.

[4+3+3]

OR

A training process is considered as a two state marcov chain. If it rains it is considered as

0, if not 1. The transit in probability matrix of the marcov chain is $\begin{bmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{bmatrix}$. Find the

probability that it will rain after three days, assuming that the initial probabilities are 0.4 and 0.6.

Code No: 113AW

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 SIGNALS AND SYSTEMS

,000 per	HARRY CONTRACT	SIGNAL	S AND SYSTEMS		W 65.
in the		(Common	to ECE, EIE, BME)	Max	. Marks: 75
Time:	3 Hours			21,2001	
Mata	This question paper cor	ntains two	parts A and B.		
Note:	Part A is compulsory w	hich carrie	es 25 marks. Answer a	ll questions in	Part A.
	Part B consists of 5 Un	its. Answe	r any one full question	i from each un	II
	Each question carries 1	0 marks ar	d may have a, b, c as	sub questions.	
leves lexel	1				
			PART- A		(25 Marka)
					(25 Marks) [2]
1.a)	Write about discrete tir	ne expone	ntial signals.	المحمد مناهما	
b)	Determine the complex	Fourier se	eries representation of	the signal	[3]
A. 13	$x(t) = \cos\left(2t + \frac{\pi}{4}\right).$	there there		Exempliant	
c)	Find the Fourier transf	orm of sign	num function.		[2]
d)	Explain the effect of un	nder sampl	ing.		[3]
e)	Define transfer functio	n and L.T.	I system.		[2]
	Justify why ideal LPF	cannot be a	ealized	,	[3]
f) g)	Define auto correlation	and cross	correlation.:		:::: [2]
h)	State and Prove Parsey	/al's Theor	em.	·	[3]
i)	Derive the relation bet	ween Lapl	ace transform and Fou	rier transform	or signal.[2]
j)	Find the z-transform o	f the follov	ving signal and sketch	its ROC.	[3]
	$x[n] = -a^n u[-n-1]$.].		222	
715	(Dati)	THE.	PART-B	;	
S., 4	fill fint	2000 100	ran iab		(50 Marks)
2 0)	Derive the expression	for mean s	square error when fund	ctions is appro	eximated in set of
2.a)	mutually orthogonal fi	inctions			
b)	Discuss the concept of	f Impulse	function. Explain hov	v signum func	ction is expressed
	in terms of unit step fu	inction.		14.	[5+5]
25	in terms of unit step fu	:::::::::::::::::::::::::::::::::::::::	OR	ilan lani	1.01
3.a)	Expand following fun	ction f(t) b	y trigonometric Fouri	er series over	the interval $(0,1)$.
	In this interval $f(t)$ is e	expressed a	s f(t) = At.		
b)	Prove that discrete m	agnitude s	pectrum is symmetric	cal about vert	1cai axis whereas
	phase spectrum anti-s	ymmetrica	l about vertical axis.	g	[3-3]
	Find the Fourier trans	C		aht ünit widtl	h and Centered at
4.a)		storm of a	gate pulse of unit ner	giit, uiiit widt	ir und Comoros m
1.	t = 0.State and prove follow	vina prope	rties of Fourier transfo	orm	
b)	i) Time shifting.	ving prope	THES OF I OUTTON HUMBER		
	ii) Differentiation in t	ime domai	n.		[5+5]
C13C			OD		
5.9)	State and prove samp	ling theore	m for band limited sig	nals using ana	alytical approach.
b)	Give the introduction	to band pa	iss sampling.		[5+5]
0)		•			

Obtain the conditions for the distortion less transmission through a system. And also 6.a) define signal bandwidth and system bandwidth. The transfer function of an LTI system is $H(\omega)$ is $\frac{16}{4+j\omega}$. Find the response y(t) for an input x(t) = u(t). ... b) input x(t) = u(t). OR Determine the impulse response of the system defined by the difference equation: 7.a)y[n] + y[n-1] - 2y[n-2] = x[n-1] + 2x[n-2].Sketch the frequency response of ideal LPF, HPF and BPF. b) State and prove any two properties of Auto Correlation Function. 8.a) Explain the concept of filtering and how is it useful in the extraction of signal from b) noise. OR State and prove Convolution property of Fourier transform. 9.a) Explain about graphical procedure to perform convolution: [5+5] b) Find Laplace transforms and sketches their ROC of 10.a) i) $x(t) = e^{-b|t|}$ for both b>0 and b<0. ii) $x(t) = te^{-at}u(t)$ for a>0. Find the Inverse Laplace transform of $X(s) = \frac{5s+13}{s(s^2+4s+13)}$ Re(s) > 0. b) Find the z-transform and sketch their ROC of: 11.a) $0 \le n \le N-1, \quad a > 0$ $x[n] = \begin{cases} a^n \\ 0 \end{cases}$ $x[n] = \begin{cases} 0 & otherwise \end{cases}$ State and prove initial value theorem of z-transform and final value theorem. Find the inverse z-transform of $X(z) = \log\left(\frac{1}{1-az^{-1}}\right)$, $|z| \ge |a|$: [4+2+ b) [4+2+4]---00O00---

Max. Marks: 75

Code No: 113BX

Time: 3 Hours

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 FLUID MECHANICS AND HYDRAULIC MACHINERY

(Electrical and Electronics Engineering)

Time.	3 Hours		2120121	
Note:	Part B consists of 5	ains two parts A and B. ich carries 25 marks. Answ Units. Answer any one marks and may have a, b,	e full question from	A. each unit.
		PART - A		(25 Marks)
1.a) b) c) d) e) f) f) i)	Distinguish between stree Distinguish between Hyd Write the assumptions to Define Impulse moments What do you mean by car Why draft tube is used o What is the use of surge Write different parameter	draulic gradient line and To derive the Bernoulli's equum equation? Atchment area? Inly in reaction turbine who	otal energy line. uation? y not in impulse turbine ing of a centrifugal pum	[3]
		PART – B	ZS	(50 Marks)
2.a) b)	units it is measured? A plate 0.035 mm distar	meant by viscosity of a lique of the new maintain this speed. Determined on the new maintain this speed.	es at 110 cm/s and req	uires a force of ty between the
3.a)	What is vapour pressur	re? How can water boil a		
b)	significance? A piston of 55 mm dia Both the piston and the piston if the space be	meter rotates concentrical e cylinder are 95 mm lon tween the cylinder and orque of 0.0135 N-m is app	lly inside a cylinder 62 ng. Find the tangential piston is filled with c	mm diameter.
4.a)	the assumptions made in An orifice meter with of The pressure difference sides of the orifice meter	or the loss of head due to a derivation. Orifice diameter 18 cm is measured by a mercury er gives a reading of 55 cm when the co-efficient of derivatives.	inserted in a pipe of 3 oil differential manom n of Hg. Find the rate of	4 cm diameter. eter on the two of flow of oil of

5.a) Derive Euler's equation of motion along a streamline and hence derive Bernoulli's equation.

In a 43° bend a rectangular air duct of 1.5 m² cross-sectional area is gradually reduced to 0.44 m² cross sectional area. Find the magnitude and direction of the force required to hold the duct in position, if the velocity of flow at the 1 m² section is 12 m/s and pressure is 2.856 N/cm². Take density of air as 1.35 kg/m³. [5+5]

Derive the equation for force exerted by a jet striking a stationary Hemispherical vane at the centre.

b) List out the various types of hydro electric power plants and explain pumped storage plants in detail. [5+5]

OR

7.a). Distinguish between Base load power plant and a Peak load power plant in detail.

A jet of water 56 mm in diameter issues with a velocity of 9.825 m/sec and impinges normally on a stationary flat plate which moves in forward motion. Find the force exerted by the jet on the plate and the work done.

[5+5]

8.a) What is meant by cavitation? What is Thomas cavitation factor? What is the significance of it?

A Francis turbine runner having a diameter of 3.15 m operates at 192.5 r.p.m., under 54 m head and develops 20175 kW at an efficiency of 85%. Find the other characteristics if this turbine is operated under 71 m head. [5+5]

OR

9.a) In the case of a pelton wheel, two hemi spherical cups are joined together and water is directed at the junction. Explain with neat diagram, what are the advantages of this arrangement.

b) Design a single jet Pelton wheel to develop a power of 850 KW under a head of 400 m while running at 700 rpm. Assume Ku = 0.43, Cv = 0.975 and overall efficiency = 84%. Calculate the jet diameter, wheel diameter and number of buckets. Give a fully dimensional sketch of a bucket.

10.a) Explain working principle of multistage centrifugal pump with a neat sketch.

b) A centrifugal pump is required to lift water against a total head of 40 m at the rate of 50 litres per second. Find the power of the pump, if the overall efficiency is 62%. [5+5]

OR

11.a). How does a centrifugal pump impart pressure energy to the fluid? Indicate the mechanism involved?

b) The internal and external diameters of the impeller of a centrifugal pumps are 200 mm and 400 mm respectively. The pump is running at 1200 r.p.m. The vane angles of the impeller at inlet and outlet are 20° and 30° respectively. The water enters the impeller radially and velocity of flow is constant. Determine the work done by the impeller per unit weight of water.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 MATHEMATICS - II

(Common to CE, CHEM, AE, MMT, PTE, CEE)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

.... Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units: Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

1.a): Find $\nabla \cdot (x^2 i + 2i - 2j j + zk)$ b) Evaluate $\int (x - 2y) dx + x dy$ where C is $x^2 + y^2 = 1$ by Green's Theorem. [3]

 $f(x) = \begin{cases} 0, -\pi \le x \le 0 \\ x, 0 \le x \le \pi \end{cases}$ then find a_1 . [2]

d):Write Euler's formulae to expand f(x) in [-4, 4] as a Fourier series. [3]...:

e) Write the two normal equations to fit the curve $y = ae^{bx}$ for the given data (x, y).

[2]

[3] Evaluate $\mu^2 y_0$.

If 3^{rd} iteration of root of $x^3 + x^2 - 4 = 0$ is 2.5815 then find 4^{th} iteration by successive approximation method. [2]... Derive the iteration formula to find the cube root of a number N by Newton Raphson

Write formulae to evaluate $\int_{0}^{a+nh} y dx$ by simpson' $1/3^{rd}$ rule and $3/8^{th}$ rule. [2]

j). If y' = x - y and y(0) = 1, then find $y^{(1)}(x)$ by Picards method.

(50 Marks)

Evaluate $\nabla^2 \log r$ where $r = \sqrt{x^2 + y^2 + x^2}$.

b) Evaluate $\int \vec{F}_{a}\vec{r}$ along the straight line joining the points (0, 0, 0) to (1, 2, 4). [5±5]

Verify stokes theorem for $F = (x^2 + y^2)i - 2xyi$ taken around the rectangle bounded 3. by the lines $x = \pm a$, y = 0, y = b. [10]

4.a): Expand $\pi \dot{x} = \dot{x}^2$ as a half range cosine and sine series in the range $0 \le x \le \pi$.

b) Using Fourier integral, prove that

$$e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x \, d\lambda}{(\lambda^2 + a^2)(\lambda^2 + b^2)} \, a, b > 0$$
 [5+5]

5. Find	Fourier cosine tra	nsform of $e^{-a^2x^2}$	and hence find	cosine transform	$1 \text{ of } xe^{-u^2x^2}$.
6. Find Using	y(32), if y(10)=35 g Gauss's forward	5.3, y(15)=32, y(2 interpolation for	mula.	26.1; y(30)=23.2	[10] -:::::::: 2, y(35)=20.5. [10]
7. Solve	e the difference eq	uation. $y_{n+2} - 5y_n$	$y_{n+1} + 6 y_n = 4^n$.		[10]
8.a) Inter b) Find	 pret Newtön Raph a real root of cos x	son method geon $-x^2 - x = 0 \text{using}$ O	Newton Raphs	on method.	[5+5]
writi	e the system of ng the coefficien gular mätrices.		roduct of a lo	wer triangular a	
	velocity V of a pawing table.	article at a distar	ace S from a po	int on its path is	given by the
	SI	AT ATTEMPT	30 40 50 65 61 52 sing:	38	
	mpson's $\frac{1}{3}rd$ rule		_		[5+5]
	J	OR			
11Give	en $\frac{dy}{dx} = x + \sin x$	y and y(0)=1 co	mpute y(0.2) a	and $y(0.4)$: with	h=0.2 using
	en $\frac{dy}{dx} = x + \sin x$ er's modified meth		ompu <u>te y(</u> 0.2) a	and <u>y(0.4)</u> ; with	h=0.2 using [10]
			ompute y(0.2) a	and y(0.4): with	
			ompute y(0.2) a	and y(0.4): with	
Eule	er's modified meth	od. ooOoo	Jane 1996 Jane Pung Sangt Ban		[10]

Code No: 53022

B.Tech II Year I Semester Examinations, November/December - 2016 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry-equal marks

1.a)	Construct the truth table for the following statement $(P \to Q) \lor (\neg P \to R)$.
b)	Show that the following statements are logically equivalent without using tr

b) Show that the following statements are logically equivalent without using truth table. $(P \to R) \land (Q \to R) \Leftrightarrow (P \lor Q) \to R$. [7+8]

2.a) How does an indirect proof technique differ from a direct proof?

- b) Using predicate logic, prove the validity of the following argument. "Every husband argues with his wife. 'X' is a husband. Therefore, 'X' argues with his wife". [5+10]
- Let $X = \{\text{ball, bed, dog, let, egg}\}$ and R is a relation defined on X as $R = \{(x, y) | x \text{ and y contains some common letter}\}$. Show that R is compatibility relation and also find maximum compatibility blocks for R.
 - b) Draw the Hasse diagram for the relation $R = \{(x, y) | x \text{ divides } y\}$ on $X = \{2, 3, 6, 12, 24, 36\}$. [8+7]
- Consider the algebraic system (Q, *), where Q is the set of rational numbers and * is a multiplication operation defined by: $a * b = a + b ab \forall a, b \in Q$. Determine whether (Q, +) is a group.
 - b) Show that the identity element in a group is unique.

[8+7]

- 5.a) Find the sum of all 4 digit numbers that can be obtained by using the digits 2,3,5 and 7(without repetition).
 - b) In how many ways can we choose a black square and white square on a 8×8 chessboard? [8+7]
- Solve the following recurrence relation using generating function a_n - $6a_{n-1} = 0$ for $n \ge 1$, and $a_0 = 1$. [15]
- 7.a) Write the rules for constructing Hamiltonian paths and cycles.
 - b) Explain the difference between Hamiltonian graphs and Euler graphs. [7+8]
- 8.a) Prove that every connected graph has at least one spanning tree.
- Prove that the complete graph of 5 vertices is nonplanar. [8+7]

---00O00---

.·Code No: 53020--. .--

JAWAHAREAL NEHRU: TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November/December - 2016

ELECTRIC CIRCUITS (Common to ECE, ETM)

Time: 3 hours

Max. Marks: 75

:::::<u>::</u>[10+5]

Answer any five questions All-questions carry equal marks

1.a) Explain in detail the volt-ampere relationship of R, L and C elements for ramp and triangular input signals with neat diagrams.

Describe the source transformation technique with suitable examples.

2.a) Find the current supplied by 10 V battery by using Star-Delta transformation for the following network shown in figure 1.

b) By using loop analysis find the current flowing through 5 ohms resistor as shown in figure 2. [7+8]

Figure: 2

3.a) The impedances of a parallel circuit are Z_1 =(6+j8) Ω and Z_2 =(8-j6) Ω . If the applied voltage is 120V, Find:

- i) Current and power factor of each branch
- ii) Overall current and power factor of the circuit
- iii) Power Consumed by each impedance
- iv) Draw the phasor diagram for overall impedance.
- b) Find form factor for a triangular waveform shown in figure 3.

[8+7]

- 4.a) Obtain the locus diagram for parallel combination of R_L-L and R_C-C with variable L.
 - b) Given a series RLC circuit with R = 10 ohms, L = 1 mH and $C = 1\mu F$ connected across a sinusoidal source of 20 V with variable frequency. Find:
 - i) The resonant frequency.
 - ii) Q factor of the circuit at resonant frequency
 - iii) Half power frequencies.

[8+7]

- 5.a) Derive coefficient of coupling for two mutually coupled coils.
-b). A mild steel ring has a mean circumference of 600 mm and a uniform cross-sectional area of 350 mm². Calculate the MMF required producing a flux of 600 μWb when an air gap of 1mm length is now cut in ring. Given relative permeability of mild steel is 1200.
- 6.a) Define and explain the following terms:
 - i) branch... ii) twig iii) path iv) cutest v).tieset.
- Find the branch currents as shown in following figure 4 by using the concept of tie-set matrix. [7+8]

Verify the Reciprocity theorem for the figure 5:

b) State and Explain Norton's theorem with an example.

[7+8]

Code No: 53016

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2016

MECHANICS OF SOLIDS

(Common to ME, MCT, MMT, AE, AME, MSNT)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) A piece of material is subjected to two perpendicular stresses as follows:

i) Tensile stresses of 100 MPa and 60 MPa ii) Tensile stress of the 100 MPa and compressive stress of 60 MPa iii) Compressive stress of 100MPa and 60MPa.

Determine normal and tangential stress on a plane inclined at 30⁰ to the plane of 100 MPa stress. Also find the resultant and its inclination with the normal stress.

b) Draw the stress strain diagram for brittle material and discuss the salient points.

[8+7]

- A beam of length L carries a uniformly distributed load 'q' per unit run on its whole length. It has one support at its left end and the other support is at a distance 'a' from the other end. Find the value of 'a' so that the maximum bending moment for the beam is as small as possible. Find also the maximum bending for this position. Also plot the shear force and bending moment diagram for the whole beam.
- b) What is the importance of shear force and bending moment diagrams of the beams? Explain. [8+7]
- 3.a) A wooden beam is 8.0 cm wide and 12 cm deep with a semi-circular groove of 2 cm radius planned out in the center of each side. Calculate the maximum stress in the section when simply supported on a span of 3.0 m, loaded with a concentrated load of 450 N at a distance of 1.0 m from the one end and a UDL of 500 N/m run over the entire span.

Derive equation for maximum bending stress developed in the circular shaft.

[8+7]

- 4.a) What is the shear stress distribution in I cross section and discuss the importance of shear stress?
- A beam of square cross-section is used as a beam with one diagonal horizontal. Obtain the magnitude and location of maximum shear stress in the beam. Draw the variation of shear stress across the section. [7+8]
 - 5. Find forces in members BC, HG, BG and DG of the truss shown in figure below. [15]

A cantilever beam of length 7 m, carries a point load 60 kN at a distance of 5 m 6 a) from the fixed end. Find the deflection and slope under the point load and also at the free end. Take $E = 2.1 \times 10^5$ MPa and $I = 89 \times 10^6$ mm⁴. What are the assumptions made to find the deflections and slopes in the beam? b) Explain in detail. State the assumptions made in the analysis of thin cylindrical shells. ::7;ä) A shell 5 m long, 1.4 m in diameter is subjected to an internal pressure of b) 1.4 MPa. If the thickness of the shell is 10 mm, find the circumferential and longitudinal stresses. Find also maximum shear stress and the changes in the dimensions of the shell. Take $E = 2.07 \times 10^5 \text{ N/mm}^2$ and Poisson's ratio = 0.3. [7+8]A cylindrical compressed air drum is 2 m in diameter with plates 12.5 mm thick. 8.a) The efficiencies of the longitudinal (η_L) and circumferential (η_c) joints are 85% and 45% respectively. If the tensile stress in the plating is to be limited to 100 MPa, find the maximum safe air pressure. Show that the volumetric strain of cylindrical shell is the sum of longitudinal (b) :....:...: ·[8+7] strain and twice that of hoop strain. ---00O00---

Code No: 53003

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November/December - 2016

STRENGTH OF MATERIALS-I

(Civil Engineering)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

What are Elastic Constants? Derive the relation between them. 1.a)

Find the total elongation for the bar shown in Figure 1. What stresses will develop b) in three Different sections? What should be the length of the portion (1) to have total deformation as zero. Assume $E_{Cu}=1 \times 10^5 \text{ N/mm}^2$. [5+10]

(a) Given bar Figure: 1

- Define proof resilience and modulus of Resilience and explain with the help of 2.a)stress strain curve.
- b) A weight of 3 kN falls 70 mm on to a collar fixed to a steel bar of 20 mm in diameter and 6m long. Determine the maximum stress induced in the bar and extension of the bar. Modulus of Elasticity of steel in 205 GPa. [5+10]
 - Derive the relation between Load, Shear Force and Bending Moment. 3.a)
- Draw neatly the Shear force and bending moment for the cantilever beam shown ...b) [5+10]in figure 2.

Figure: 2

Write the assumptions in simple bending. 4.a)

The I- girder shown in figure 3 is of 10 m long simply supported and carries a b) U.D.L of 30kN/m (inclusive of self weight). Find the maximum stress in the material due to bending. Also draw the stress distribution across the cross section.

[4+11]

Figure: 3

Derive an expression for shear stress distribution across the cross section. 5.a)

The T-Beam shown in figure 4 is subjected to a shear force of 240 kN. Sketch the b) [6+9]shear stress distribution over the depth of the section.

Figure: 4.:

State and prove Moment area theorems. 6.a)

....

A Simply supported beam of 12.5m length carries two point loads as shown in b) Figure 5. Find the deflection under each load and slopes at supports. Take 'EI' [5+10]as constant through out the length of the beam.

Derive the formula for longitudinal and circumferential stresses in Thin cylinders. 7. a)

A 10 m long thin cylindrical shell 1.5 m in diameter and 14 mm thick. It is b) subjected to an internal pressure of 5 MPa. Calculate the stresses induced in the cylinder. Determine the change in diameter, change in length and change in volume of the shell. E=200 GPa and Poisson's ratio=0.3.

A cylinder of 220 mm dimeter and 60 mm thickness is subjected to an internal pressure of 60 Mpa. Determine the stress distribution and compare with thin cylinder theory. Plot the variation of radial and circumferential stresses. Find the change in thickness of the cylinder. Take Poisson's ratio = 0.25 and E=200 GPa.

[15]

---00O00---

			00	000		
Ď.	26		100 Em		See See	Con the
É.					The state of the s	25
i.	ZE.					26
i dan	Zb	26	26			
	26		2.6			
i.	ali					
16				26	ZĐ	
	26	ZS		26		

Code No: 223AE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Pharmacy II Year I Semester Examinations, November/December-2016 ANATOMY PHYSIOLOGY AND PATHOPHYSIOLOGY

Time: 3hours Max.Marks:75

Note:	This question paper of	contains two parts A and B.		
	Part A is compulsory	which carries 25 marks. A	answer all questions in	ı Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions

	carries 10 marks and may have a, b,	c as sub questions.		
	76 Th	PART- A	**************************************	(25 Marks)
1.a) b) c) d) e) f)	What is EEG and mention its application write a note on Epilepsy Mention the causative organism and Write a note on acute renal failure Mention the hormones secreted by performance on disorders which occur	clinical symptoms		[2] [3] [2] [3] [2] [3]
g) h) i)	Define coitus and fertilization Briefly explain oogenesis Mention the various mediators of inf Write a note on cellular adaptations	lammation	26	[2] [3] [2] [3] (50 Marks)
2	M			
2. 3.	Mention different parts of the brain a transmission in CNS. Compare and contrast the anatomic parasympathetic systems.	OR	9.59 gH	[10]
4.	With a labelled diagram explain the kidneys in acid-base balance. Define tidal volume and vital cap respiration.	OR		[10]
6. 7.	With a labelled diagram explain the a and mention their physiological role. Explain the anatomy of pancreas secreted by endocrine portion of pancreas.	OR and explain the		[10]
8.	Explain the process of sexual different With a labelled diagram explain the vexplain the physiological functions of	OR various parts of fem	ale reproductive	25, 36

:6	10:	Classify the causes	of cellular injur		process of apop	tosis and necrosis.	24
i.C	11. 245	Define acute and chand repair.	100 Jun 1	OR tion and explainooOoo	the process of ce	llular inflammatio [10]	
i.							
lő.	252					26	Z
			25.	26			
**************************************			ZÓ		100 July 200	24	
15					25		Y Fee
	Zń		all di		26		Æ
: Ex	as		26	Cold Cong Street Test		100 mg	2

Max. Marks: 75

Code No: 123CT JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 DIGITAL LOGIC DESIGN

(Computer Science and Engineering)

	em.	2.11	(Company		Max. N	Tarks: 75
	444. 14	3 Hours This question paper	a antoing two 1	parts A and B		
	···Note:	Part A is compulsor Part B consists of Each question carrie	y which carrie 5 Units. Ar es 10 marks an	nswer any one fund may have a, b, c	as sub questions.	art A. each unit.
	**************************************	ah		PART-A		(25 Marks)
	1.a) b)	Explain duality theo Convert following lai) F28 ₁₆	nexadecimal n ii) I	umber to decimal. $BC2_{16}$.		[2] [3] .[2]
	c) d)	Implement Ex-NOI Obtain the prime in $f(A, B, C) = \sum (1, C)$	nplicants for g 3, 6, 7).	nly NAND gates. iven Boolean expr	ession using K-map	
	e) f) g)	What is code conve Explain the analysi Explain clear and p	s procedure fo	or combinational ci	rcuit.	[3] [2]
Ĭ.	h) i) j)	What is race aroun Explain the role of Compare ROM and	d condition? Cache Memo	ry in sequential cir	cuits.	[3] [2] [3]
	.			PART-B		(50 Marks)
	2.a) b)	Using 2's complem Implement the foll $F(A,B,C) = \pi M$ (0	lowing Boolea ,2,4,5,6).	or function with No		[5+5]
		77.11	Ity of unit_dis	tance code? State v	where they are used.	
	3.a) b)	Give the Boolean i) AND ii)	expressions us NOR iii	Sed for following g	R v) EX-NC	
	4.	a) f (A, B, C, D, E b) f (A, B, C, D) =	$E(x) = \sum_{m} m(1, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,$	7, 8, 12, 13) + a (1	1, 15).	[6]
200	5.a)	Heing K-man obt	ain the minin	nal sum of product	ts and the minimal	product of sums
i)	b)	from of the functi Explain about ess	ion f (a,b,c,d) =	$=\sum m(1, 2, 3, 3, 0,$	7, 8, 13).	[5+5]
	6.	Design the full ac	lder circuit us	ing decoder and de	-multiplexer.	[10]
È	7:ā) b)	1 1 C	e on priority e			[5+5]

	b) Exp	mpare combination	K flip-flop with	OR		[5+5]	
in the second	a) I	aw and explain the RS b) D. b) D. aw and explain the plain address and one	hlock diagram	of PLA.		[5+5] [5+5]	270 - 177 100 - 177 201 - 170
16	11. Im	plement the follow $F(A, B, C, D) = \sum_{i=1}^{n} G(A_i, B_i, C, D) = \sum_{i=1}^{n} G(A_i, B_i, C, D)$	ving function us $2m (1, 9, 12, 15)$ 2m (0, 11, 2, 3, 4)	ing a PROM.	2, 13; 14, 15).	[5 + 5]	26
				00000			
	26		26	26	26		
	25		24	25	25		21
2 x x x x x x x x x x x x x x x x x x x			Anna (40)	2015 477 272 100 1000 1001	Per Jan 1		" " " " " " " " " " " " " " " " " " "
2 2		26		Anna Anna	26		
		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		26	erri Are	25	. 2
. 60	26	ZM		žħ			

Code No: 123BY JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016

ELECTROMAGNETIC FIELDS

(Electrical and Electronics Engineering)

Max. Marks: 75 Time: 3 Hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A (25 Marks) [2] Write the properties of potential function. 1.a) [3] What is Maxwell's first law? [2] b) Define electric dipole. [3]. c) Define Convection and conduction current densities. d) [2]: a) e) Define Magnetic field intensity. [3] Write the applications of Ampere's circuital law. [2] f) Write the vector Poisson's equation. [3] g) What are the applications of permanent magnets? [2] h) Define time varying fields. i) [3] How dynamically induced EMF is produced? j)

PART-B

(50 Marks)

- State and prove Gauss's law as applied to an electric field and determine the 2.a) field due to an infinite line charge.
- Derive Poisson's and Laplace equations starting from point form of Gauss Law. b)

OR

- Show that the electric filed intensity at any point inside a hollow charged 3.a) Spherical conductor is zero.
- Three point charges each 5 nC are located on the x-axis at points: -1, 0 and + 1 m in free space. (i) Find E at x=5. (ii) Determine the value and location of the b) equivalent single point charge that would produce the same field at very large distance.
- Establish the electrostatic boundary conditions for the tangential components of electric field and electric displacement at the boundary of two non dielectrics. 4.a)
- The relative permittivity of dielectric in a parallel plate capacitor varies linearly b) from 4 to 8. If the distance of separation of plates is 1 cm and area of crosssection of plates is 12 cm², find the capacitance. Derive the formula used. [5+5]

OR

- A spherical capacitor with inner sphere of radius 1.5 cm and outer sphere of radius 3.8 cm has an homogeneous dielectric of $\epsilon=10~\epsilon_0$. Calculate the 5.a) capacitance of the capacitor. Derive the formula used.
 - Prove that the derivative of the energy stored in an electrostatic field with respect to volume is ½ D.E, where D and E electric flux density and electric field b) [5+5]intensity respectively.

(6,a) b)	State and explain Bi field at a point due to What are the limitati to time varying field	ons of Amperes	a condition carr	VIIIg Current.		
7.a) :b)	Derive Maxwell's se Derive magnetic fiel	d intensity due to	v (B)=0. a square current			200 To
8.a) b)	Derive the Neuma inductances. Explain the concept	of vector magnet	tic potentials.		[5+5]	
9;a). b)	Determine the induce A rectangular coil $2x + 6y - 3z = 7$ such the origin. Calculate	tance of a toroid of area 10 cm ² th that the magne	carrying a cur	rent of 50 A line to the coil is directed	es on plane d away from [5+5]	
10.a) b)	Explain concept of displacement current Explain in detail a fields.	f displacement at density. bout modification	current and ob	equations for t	time varying [5+5]	
11.a)	Explain Faraday's l induced EMF. Derive Maxwell's e	era, ar	ngnetic induction	* 7 .*		
		00	οΟ00			
in be		The state of the s	yes see	And Land	Provident	**************************************

27. F.	. Z6		25			

Max. Marks: 75

Code No: 123BU

Time: 3 Hours

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2016 SWITCHING THEORY AND LOGIC DESIGN

(Common to ECE, EIE, ETM)

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

(25 Marks) [2] What are the different illegal states of BCD and XS-3? 1.a) [3] State and prove the included factor theorem. b) [2] What is the prime implicant chart? c) [3] Draw the full subtractor using X-OR and AOI gates. d) \cdot [2] e). ... Define the Propagation delay time. f) Draw the conversion table of SR flipflop to JK flipflop. [3] [2] Define the ring counter. g) [3] What are the applications of Shift register? h) [2] What are the capabilities of FSM? i) Draw the state box and Decision box diagrams of ASM Charts. [3] j) (**50 Marks**) Convert the gray number 10110101 into: 2.a) i) Decimal ii) Octal iii) Hex Perform the subtraction in BCD using 9's complement method for 592.6-887.9. b) OR Derive the Boolean expression for a two input Ex-OR gate to realize with the two input 3.a)

3.a) Derive the Boolean expression for a two input Ex-OR gate to realize with the two input NAND gates without using complemented variables and draw the circuit.

b) Expand (A+D')(A+C')(A'+B)(A'+B+C) into maxterms and minterms. [5+5]

4.a) Using the QM method, obtain the simplified expression for: $F=\Sigma m$ (4,5,6,7,8,9,)+d(10,11,12,13,14,15).

[5+5]

OR

5.a) Design the 8:1 MUX for the given Boolean Expression $f=\Sigma m(1,3,4,11,12,13,14,15)$.

b) Design a combinational circuit to detect the decimal numbers 0,2,4,6 and 8 in a 4-bit XS-3 code input. [5+5]

6.a) Explain the generation of narrow spikes in the edge triggered flip-flops.

b) Draw and explain the operation of the Master Slave SR flip-flops with block diagram.

[5+5]

7.a) Derive the characteristic equation of JK flip-flop from the Excitation table. Explain the Race around condition in flip-flops in detail. [5+5]Design a Ring counter using shift register. 8.a) Define state, state diagram. Draw state diagram taking any one as an example. [5+5]b) OR 9.a) Design a counter circuit for a mod-asynchronous counter using JK flip-flops. Design a 3-bit up/down counter which counts up when the control signal M=1 and counts down when M=0. Draw the merger graph and obtain the set of Maximal compatibles for the incompletely 10.

specified sequential machine for given state table.

PS		NS,Z
	I1	I2
A	E,0	B,0
R	F,0	A,0
C	E	C,0
D.	F,1	D,0
E	C,1	B,0
E	D	B,0

OR

11.a) ...Draw and explain the data path subsystem for weighing machine... b) Draw the State diagram, state table and ASM chart for a D flip-flop.

[5+5]

---00O00---

Code No: 123BK

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December-2016 FLUID MECHANICS

(Common to CE, CEE)

Time: 3 Hours

Max. Marks: 75

This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A	
Part P consists of 5 Units Answer any one full question from each unit.	
Each question carries 10 marks and may have a, b, c as sub questions.	

PART - A	(25 Marks)
1.a) What is vapour pressure? Explain.b) List out different fluid properties along with their significance.c) What do you mean by 1-D,2-D,and 3-D flows?	[2] [3] [2]
 d) Distinguish fluid Statics, Kinematics and Dynamics. e) Distinguish between notch and weir. f) Explain about Navier-Stokes equation. g) What is Vonkarman momentum integral? 	[3] [2] [3] [2] [3]
 h) Explain about boundary layer in transition. i) Explain Reynolds number. j) Compare velocity profiles for laminar and turbulent flow in pipes. 	[2]

PART - B

(50 Marks)

Enunciate Newton's law of viscosity. Explain the importance of viscosity in fluid motion. 2.a) What is the effect of temperature on viscosity of water and that of air?

An oil of viscosity 5 poise is used for lubrication between a shaft and sleeve. The diameter of shaft is 0.5 m and it rotates at 200 rpm. Calculate the power lost in the oil for [5+5]a sleeve length of 100 mm. The thickness of the oil film is 1.0 mm.

Derive an expression for the depth of centre of pressure of an inclined surface immersed 3.a) in a liquid.

Find the total pressure and the centre of pressure on a vertical gate of the size $4 \text{ m} \times 6 \text{ m}$ with 4 m edge coincides with the water surface. Assume one side of gate is filled with water, while on the other side of air.

Define the following:

- i) Steady flow,
 - ii) Non-uniform flow,
 - iii) Laminar flow, and
 - iv) Two-dimensional flow.
- The water is flowing through a taper pipe of length 50 m having diameters 40 cm at the b) upper end and 20 cm at the lower end, at the rate of 60 litres/s. The pipe has a slope of 1 in 40. Find the pressure at the lower end if the pressure at the higher level is [5+5]24.525 N/cm².

- Define stream line, path line and streak line. Derive mathematical expressions for each of 5.a) these lines.
 - A 75 cm diameter uniform pipe bend turns the directions of flow of gasoline of b) sp.gr. 0.79 through an angle of 1200 in the horizontal plane. The constant pressure and velocity through the bend are 90 KPa and 3 m/s respectively. Find the magnitude and direction of the force to be exerted on the bend to achieve the directional change.
- Integrate three-dimensional Euler's equations for steady flow condition and prove that 6.a) each one of them yields Bernoulli's equation.
 - b). A pipe of diameter 200 mm. conveys a discharge of 2250 litres of water per minute and has a pressure of 15.70 kPa at a certain section. Find the total energy head with respect to a datum of 5 m below the pipe.

OR

- Differentiate between: 7.a)
 - i) Bernoullis equation and Eulers equation
 - ii)Velocity head and Pressure head
 - iii) Energy equation and momentum equation.
 - The centre line of a pipe conveying water is horizontal. The sectional areas at sections b) 1-1 and 2-2 are 5 m² and 2 m² respectively. The pressure intensity and velocity at section 1-1 are 39.25 kPa and 1.2 m/sec respectively. Calculate the velocity and pressure at [5+5] section 2-2. Ignore losses.
- What conditions should be satisfied for separation of boundary layer? Discuss briefly the 8.a) methods that can be used to prevent separation.
- How will you determine whether a boundary layer flow is attached flow or detached flow b) or on the verge of separation?

- Describe pressure drag and friction drag. 9.a)
- What is meant by boundary layer? Explain with a neat sketch, development of boundary b) layer along a flat plate held parallel to uniform flow. Point out the salient features. [2+8]
- Show that the loss of head due to sudden expansion in pipe line is a function of velocity 10,a)
 - The rate of flow of water through a horizontal pipe is 0.3 m³/s. The diameter of the pipe is suddenly enlarged from 250 mm to 500 mm. The pressure intensity in the smaller pipe is 13.734 N/cm². Determine: (i) loss of head due to sudden enlargement, (ii) pressure intensity in the large pipe and (iii) power lost due to enlargement. [5+5]

OR

- 11.a) Explain the terms: (i) Pipes in parallel (ii) Equivalent pipe and (iii) Equivalent size of the pipe.
 - b) Three pipes of lengths 800 m, 600 m and 300 m and of diameter 400 mm, 300 mm and 200 mm respectively are connected in series. The ends of the compound pipe is connected to two tanks, whose water surface levels are maintained at a difference of 15 m. Determine the rate of flow of water through the pipes if f = 0.005. What will be diameter of a single pipe of length 1700 m and f = 0.005, which replaces the three pipes.

Code No: 113AU

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 ELECTRONIC DEVICES AND CIRCUITS

(Common to EEE, ECE, CSE, EIE, IT, MCT)

	(Common to -	, ,		Max. Marks: 73
Time: 3 Hours		360 360	JH 374	2003-00

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

			PART- A		(25 Marks)
1.a) b) c) d) f) g)	Draw the symbol a Differentiate Avala Draw the circuit di Define ripple facto What is Early Effe Define α,β and γ an Draw the circuit of	anche breakde agram of cen r, rectification ect?	own and Zener breater tapped Full was on efficiency, form heir relations. der bias and also it	ye rectifier. factor. s thevenin equiva	[-]
h)	Assuming R _C =R _B = required to drive the	= 1 K Ω , V _{CEs} he transistor	$_{\text{sat}}$ =0.2 V and β =40 to saturation shown	I III liguro, i	m base current [3].

Figure: 1

[2] Draw the symbols of EMOSFET and DMOSFET. i) In brief explain how FET is used as a Voltage Variable Resistor. [3] j)

PART-B

(50 Marks)

- Explain about various current components in a forward biased and reverse biased 2. [10] PN junction diode. OR
- Obtain the expressions for: 3:...
 - a) Transition capacitance and
- b) Diffusion Capacitance.

[5+5]

- Elucidate the operation of a fullwave rectifier with π Section Filters. 4.a)
 - In a fullwave rectifier using an LC filter L=15 H, C=50 μ F and R_L=100 Ω . Calculate V_{de} for an input of $V = 20 \sin(200\pi t)$ by choosing $R_f = R_{ch} = 70\Omega$. b) OR
 - Why there is a need of regulation? Also explain how voltage regulation is obtained using Zener diode....
 - Explain the operation of UJT, also its VI characteristics and its applications. [10] 6. OR
 - Define various h parameters. 7.a)
 - Justify how transistor can be used as an amplifier. b)

- N in Define various compensation techniques. 8.a)
 - For the circuit shown in figure 2 if $R_c=10K$ Ω , $R_E=1.5$ K Ω , $R_1=39$ K Ω , b) $R_2=2.9 \text{ K }\Omega \text{ and }\beta=100.$

Figure: 2

Calculate V_{CE} and I_{C} .

... [4,+6]

OR

- Define Operating point and explain the concept of DC load line, AC load line. 9.a)
 - In the circuit shown in figure 3, $R_1 = 60 \Omega$, $R_E = 500\Omega$, $V_{CC} = 3 V$, the silicon npn transistor has a very high value of β . What is the required value of R_2 to produce b) $I_C = 1 \text{ mA}$.

Figure: 3

ń.	-10. W	ith the help of ne mplifier.	at diagram expl	ain the operatio	n of FET Comm	non Source [10]	26
	A	xplain the analysis	OR			[10]	
	Z.E.		00		25	End tool	- 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 (m) 2 (m)		26	Barr See				
			26				503 AV.
i.G.	25				25		
			344 FF	2ml (2)	, m. yw.		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 Engl		0.1 1000 0.1 1000 0.1 1000	in the	Show Feel	(\$444 No.)	
1 200			2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		26		
				26	and the second	2100, 400 200 200 2000 100	
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26		26				

Code No: 113AP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to CE, ME, AME, PTE, MSNT)

Max. Marks: 75 Time: 3 Hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit,

Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a) State Kirchoff's laws.	[2]
1.a) State Kirchoff's laws.	[3]
b) What are the disadvantages of moving coil instruments?	[2]
c) What are the functions of commutator and brushes in a DC machine?	131
dy "I jet out few applications of d.c shunt motor and compound motor.	[2]
Define transformation ratio of transformer. Write the expression.	[2]
On what feature does hysteresis loss of a transformer depends upon?	[3]
1 1	ectifier? [2]
g) What are the advantages of Bridge rectifier when compared to make a second SCP, over PN junction diode?	[3]
h) What are the advantages of SCR over PN junction diode?	[2]
i) What is the function of electron gun?	[3]
Why is phosphor used in CRT?	[.5]

PART-B

(**50** Marks)

(25 Marks)

Find the current supplied by 10 V battery by using star-delta transformation for the following network shown in figure 1.

Figure: 1

What are passive and active elements? Explain the volt-current relationship of passive b) [5+5]elements with examples.

OR

3.a) : Obtain the equivalent resistance between A and B terminals as shown in figure 2.

Figure: 2

Discuss the principle of operation of moving iron instrument. b)

[5+5]

b) Explair	the EMF equation about the differ	ent types of DC 1 OR	motors. R		[6+4]
5.a)Discuss	s in detail the wo torque equation	rking of Three po of a d.c motor.	oint starter used	in a d.c motor.	[5+5]
6.a) Derive b) Discus	the emf equations about the principal	of a transformer iple of operation OF	of alternators.		[5+5]
7.a): :: Discus	s about the vario s how regulation	us locces that occ	eur in a transform	ner. (]]: ;[]] onoùs impedano	ce method. [5+5]
8.a) Draw	the forward bias	s and reverse bi	as characteristic	s of PN junction	on diode and
avenlais					
0 Draw	the circuit diagra er and derive t	m and explain th	ne working of ha	alf wave and full	wave bridge
10, Discus	ss the principle onent in the block	of working of diagram.		ining the funct	ion of every
11.a) Derive	e the expression t ss the various app	for electric field o	deflection sensiti	vity of CRT.	[6+4]
U/ 1515001		one city	J.		
	Esta Torre				
	Esta large	ooC	000		
		ooC)oo	2000 2000 2000 2000 2000 2000 2000 2000	

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016

FLUID MECHANICS (Civil Engineering)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

Discuss the important properties of fluids along with their units and practical 1.a) significance.

Determine the intensity of shear of an oil having viscosity = 1.85 poise and is used for lubrication in the clearance between a 18 cm diameter shaft and its ... b) journal bearing. The clearance is 1.6 mm and shaft rotates at 190 r.p.m.

Explain the procedure for finding hydrostatic forces on curved surface. 2.a)

Determine the total pressure and centre of pressure on an isoceles triangular plate of base 6m and altitude 5.75 m when the plate is immersed vertically in an oil of b) specific gravity 0.72. The base of plate is 1.5 m below the free surface of water. [8+7]

- Define the following types of flow 3.a)
 - Steady or Unsteady flow.
 - ii) Uniform or Non-Uniform flow.
 - iii) Laminar or Turbulent flow.
 - iv) Rotational or Irrotational flow.
 - The velocity components in a two-dimensional flow field for an incompressible fluid are expressed as u = x - 6y. Obtain expressions for stream function and velocity b) [7+8]potential.
- Derive Euler's equation of motion along a streamline and hence derive Bernoulli's 4.a) equation.
 - The diameter of a pipe bend is 0.3 m at inlet and 0.15 m at outlet and the flow is turned through 120° in a vertical plane. The axis at inlet is horizontal and the b) centre of the outlet section is 1.5 m below the centre of the inlet section. The total volume of fluid contained in the bend is 0.085 m³. Neglecting friction, calculate the magnitude and direction of the force exerted on the bend by the water flowing through it at 225 lit/s when the inlet pressure is 137.34 kN/m².
 - Differentiate between laminar boundary layer and turbulent boundary layer. What 5.a) is laminar sub layer?
- Find the displacement thickness, the momentum thickness and energy thickness for b) the velocity distribution in the boundary layer given by $u/U = 2(y/\delta) - (\frac{y}{\delta})^2$. [8+7]

16	6.a) E.	xplain Reynolds E Iention the charac	Experiment and teristics of lami	Discuss the impor	rtance of Reynolo flows in a pipe.	ds number.	26
	b) F	how that the loss elocity head. xplain different l	aws of fluid fr	iction and derive	an expression fe	or friction losses	
1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.a) V	sing Darcy's equa ::::: !:::: What is a pitot-tu	tion			[/+8]	
	b) D	elp of pitot-tube? Perive equation of	discharge for o	rifice meter with a	neat sketch.	[8+7]	
		26		00O00;··	1771 ATT		
iñ.			Zħ	100 100 100			
				26	26	26	26
)E				200 A	The last	And Single	
		200 III		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
10.00° 0.0000 0.					26		-779 E
16					26		

Max. Marks: 75

Code No: 53013

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 ENVIRONMENTAL STUDIES

(Common to ME, ECE, CHEM, ETM, MIE, AE)

Time: 3 hours

	o nours	Answer any fiv All questions carr	e questions y <u>eq</u> iial marks		
1.	cketch	y food chains and de			
.::2:::::	Explain:the impact	s of Big dams and M	ining on enviro	nment and	people. : [.15]
3.	What are the threat	s of biodiversity and	explain its cons	servation m	nethods? [15]
4.	particulate and gas	ects of nuclear radiate eous air pollutants?			
5.	What is Kyoto pro Ozone layer deplet	otocol and explain t	he methods to o	check Glob	oal warming and [15]
6.	data acquisition.	ronmental Managem		THE PART OF THE PA	
7.	Explain the functi Act.	ons of Environment	al protection Ac	et and Wate	er pollution Cess [15]
8.a) b)	Explain the conce	pt of Green Building eve Sustainable deve	with advantage lopment from U	s. nsustainab	le development? [5+10]
		00O	00		
***)1 z** 2 1)					25

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 MATHEMATICS-III (Common to EEE, ECE, ECOMPE) Max. Marks: 80 Time: 3 hours Answer any five questions All questions carry equal marks Show that $J_0^2 + 2(J_1^2 + J_2^2 + J_3^2 + \cdots) = 1$. Prove that $\left[J_{\frac{1}{2}}(x) \right]^2 + \left[J_{\frac{1}{2}}(x) \right]^2 = \frac{2}{\pi x}$. Show that $f(z) = P_n(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + ... + a_n z^n$ is continuous 2.a) Find the analytic function f(z) = u + iw, where $u = e^{x}(x \cos y - y \sin y)$. [8+8]b) Find all the roots of $\sin z = 2$. Find the real and imaginary parts of $\log\{1 + \cos 2\theta + i \sin 2\theta\}$. .3;a) 6) Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz - 4$ if c is the perimeter 4. of the square with vertices at $1\pm i$, $-1\pm i$. State and prove Laurent series.

Determine and classify the singularities of $\frac{1}{(2sinz-1)^2}$. 5 a) [8+8]b) Evaluate $\int_0^{2\pi} \frac{\sin^2 \theta}{a + b \cos \theta} d\theta$; (a>b>0). [16] 6. State and prove Argument theorem. ...7.a) If $f(z) = z^5 - 3iz^2 + 2z - 1 + i$, evaluate $\oint_c \frac{f'(z)}{f(z)} dz$ where c encloses all the zeros of f(z). b) [8+8] Show that every bilinear transformation maps the circles in the z-plane onto the -8.a)

circles in the w-plane.

Determine the region of the w-plane into which the first quadrant of z-plane is b) mapped by the transformation $w = z^2$.

Code No: 223AA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Pharmacy II Year I Semester Examinations, November/December-2016 PHARMACEUTICAL UNIT OPERATIONS- I

Max.Marks:75 Time: 3hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART- A	(25 Marks)
(b) (c) (d) (e) (f) (g)	Define Reynolds number. Write the role of manometers in pharmacy. Write the role of filter aid in filtration process. Write difference between surface and depth filtration. Name the different types of crystals. Write the limitation of supersaturation theory. Define steam distillation. Write the principle of rectification. Write the safety precautions of chemical hazards. Write briefly about accidents records.	[2] [3] [2] [3] [2] [3] [2] [3] [2] [3] [2] [3]
	PART-B	(50 Marks)
2.a) b)	Write in detail about equipment used to determine humidity. Write the basic equation used to determine fluid flow. OR	[5+5]
3	Define wet bulb theory and write the role of psychometric chart in example.	pharmacy with [10]
4	Write the theory of filtration and enumerate various factors a filtration.	ffecting rate of [10]
	OR	- contribugation
5	Define centrifugation process and write the principle involved i process with example.	[10]
6	Write in detail about the Solubility curves and calculation of yields OR	. [10]
7.	Write in detail about solubility curves with diagram.	[10]
8.	Write principle of rectification process. How Azeotropic distractions of the works?	tillation process
9.	Define flash distillation and explain Raoult's law with derivation.	[10]
10.	Write in detail about the various electrical hazards with their safet OR	y steps. [10]
-11:a) b)	Write a note on mechanical hazards. Write in detail about Industrial dermatitis.	[5+5]

Code No: 213AA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Pharmacy II Year I Semester Examinations, November/December-2016 PHARMACEUTICAL UNIT OPERATIONS- I

Max.Marks:75 Time: 3hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART- A (25 Ma	
(b) (c) (d) (e) (f)	Define Reynolds number. Write the role of manometers in pharmacy. Write the role of filter aid in filtration process. Write difference between surface and depth filtration. Name the different types of crystals. Write the limitation of supersaturation theory. Define steam distillation.	[2] [3] [2] [3] [2] [3] [2]
h)	Write the principle of rectification. Write the safety precautions of chemical hazards. Write briefly about accidents records.	[3] [2] [3]
	PART-B (50 M	arks)
2:a) b)	Write in detail about equipment used to determine humidity. Write the basic equation used to determine fluid flow. OR	[5+5]
3.	Define wet bulb theory and write the role of psychometric chart in pharm example.	[10]
4	Write the theory of filtration and enumerate various factors affecting filtration.	g rate of [10]
5.	OR Define centrifugation process and write the principle involved in centri process with example.	rifugation [10]
6	Write in detail about the Solubility curves and calculation of yields. OR	[10]
7	Write in detail about solubility curves with diagram.	[10]
8.	Write principle of rectification process. How Azeotropic distillation works?	n process [10]
9.	Define flash distillation and explain Raoult's law with derivation.	[10]
10.	Write in detail about the various electrical hazards with their safety steps OR	s. [10]
11.a) b)	Write a note on mechanical hazards. Write in detail about Industrial dermatitis.	[5+5]

Code No: 123BT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

JAN	B.Tech II Year I Semester Examinations, November/December - 2016 PROBABILITY THEORY AND STOCHASTIC PROCESSES	
\$600 Texas	(Common to ECE, ETM)	
Time:	3 Hours Max. Ma	rks: 75
	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part Part B consists of 5 Units. Answer any one full question from each in Each question carries 10 marks and may have a, b, c as sub questions.	Aunit.
	PART- A (25	Marks)
b) c) d)	A discrete random variable can be defined on a continuous sample space. Whether it is true or false. Give an example to support your claim. Write the conditions to be satisfied by a function to be a random variable. Write the properties of probability density function. Determine whether the following function is a valid probability discrete.	[3] [2] tribution
	function or not? Write the properties used. $G_x(x) = \frac{x}{a} [u(x-a) - u(x-2a)]$	[3]. [3]
e) f) g)	Write two properties of joint distribution function of random variables. State Central limit theorem. Give an example of a deterministic random process.	[2] [3] [2]
,h)	Auto correlation function of a stationary random process is $R_{xx}(\tau) = 25 + 1$ Find its variance.	
i)	Check whether the function below is a valid power density spectrum or no	
D.	$\frac{\omega}{j\omega^6 + \omega^2 + 3}$. Autocorrelation function of a random process is given by $R_{xx}(\tau) = 3\delta(1)$ and sketch its power density spectrum.	[2] 7) . Find [3]
	PART-B (50	0 Marks)
2.a)	State and prove Bayes Theorem. Define the terms outcome, event, sample space, mutually exclusive Consider the experiment of rolling of two fair dice simultaneously and its sample space. Also give examples of terms mentioned above relate experiment. OR	e events.
3.a) b)	Discuss the relative frequency approach and axiomatic approach of proba-	e event of

	Tole			
Resistance (Ω)	5%	10%	Total	
22	10	14	24	
47	28	16	44	
100	24	8	32	
Total	62	38	100	

Find the mean of Binomial random variable...

In a sports event javelin throw distances are well approximated by a Gaussian distribution for which mean is 30m and standard deviation is 5m. In a qualifying round, contestants must throw farther than 27m to qualify. In the main event the record throw is 44m.

i) What is the probability of being disqualified in the first round?

ii) In the main event what is the probability the record will be broken?

OR

5.a) Obtain the characteristic function of Poisson random variable.

b) X and Y are two statistically independent random variables related to W as W= X + Y. Obtain the probability density function of Y in terms of probability density functions of X and Y. [5+5]

6.a) Obtain the expression for conditional density $f_X(X/B)$ where event B is defined as $\{y_a \le Y \le y_b\}$.

b) Write short notes on jointly Gaussian random variables.

[5+5]

OR

Two random variables. X and Y:: have joint characteristic function $\phi_{XY}(\omega_1;\omega_2) = \exp(-2\omega_1^2-8\omega_2^2)$. Show that X and Y are uncorrelated zero mean random variables.

b) Two statistically independent random variables X and Y have mean values E[X] = 2 and E[Y] = 4. They have second moments $E[X^2] = 8$ and $E[Y^2] = 25$. Find Variance of W = 3X-Y. [5+5]

A random process is defined as $X(t) = ACos(\omega_0 t + \Theta)$, where Θ is a uniformly distributed random variable in the interval $(0, \pi/2)$. Check for its wide sense stationarity? A and ω_0 are constants.

b) Classify random processes and explain.

[6+4]

OR

Define autocorrelation function of a random process. Write its properties and prove any two of them.

b) Explain the concept of time average and ergodicity. Write the conditions for a random process to be ergodic in mean and autocorrelation. [5+5]

...10.a) Derive the expression for power density spectrum of a random process.

Write the properties of power spectral density:

[6+4]

OR

11.a) Prove $S_{YY}(\omega) = |H(\omega)|^2 |S_{XX}(\omega)$. Where X(t) is input random process of an LTI system and Y(t) its output. $|H(\omega)|$ is the transfer function of the LTI system.

Define cross power density spectrum and write its properties.

5+51

Code No: 123BP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 DATA STRUCTURES

(Common to CSF IT)

(Common to CSE, IT) Max. Marks: 75 Time: 3 Hours Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART- A :--, (25 Marks) What is linked list? Write advantages of doubly linked list over singly linked list. 1.a) What is recursion? Give the properties of a recursive definition of an algorithm. [3]What is a stack? List the applications of stack. [2] Show the detailed contents of stack to evaluate the given postfix expression. d) $\{123 + *321 - + *\}$ Define a graph. List different graph traversal techniques. [2] e) What are binary trees? Mention different types of binary trees with example, [3] f) [2] What is hashing? g) h) [3] What is sorting? What is searching? [2] i) Define AVL tree? Give example. What is B-tree of order m? Draw a B-tree of order 3. [3] j) **PART-B** (50 Marks) What is amortized complexity? Explain different methods to arrive at amortized -2.a) costs for operations. Write a C program to implement insertion to the immediate left of the Kth node in b) singly linked list. OR Given an ordered linked list whose node is represented by 'key' as information and 'next' as link field. Write a C program to implement deleting number of nodes (consecutive) whose 'key' values are greater than or equal to 'Kmin' and [10] less than 'K_{max}'. Write a C program to implement multiple stacks using single array. 4.a) Convert the infix expression a / b - c + d * e - a * c into postfix expression and :b) trace that postfix expression for given data a = 6, b = 3, c = 1, d = 2, e = 4.[5+5]What is a circular queue? Implement insert and delete operations. 5. [10]

(E)	:::(6,a) b)	Construct a binary to Preorder traversal: A Inorder traversal: E Implement Depth Fi	BCAEDGH:	FI	l sequences:	[5+5]	26
	7.a) b)	Define a Max Heap. {12, 15, 9, 8, 10, 18 What is a graph? Ex	Construct a ma	OR Ix heap for the for the form the fo	llowing:	[5+5]	
	8.a) b)	Write an algorithm to Apply selection sort {21, 11, 5, 78, 49, 5 }	on the following 4, 72, 88}		resolution tech	[5+5] nniques with [10]	
M.	10.a)	Build an AVL tree v {15, 20, 24, 10, 13, Write Knuth-Morris	7, 30, 36, 25, 42	2, 29}	n.	::[5+5]	2000 2 000 2000 2 000 2000 2 000
	11.	Write short notes or a) Red-Black trees				[3+3+4]	
: 		26	0	00000		26	
		100 Jan 100 Ja	Service Services	AND	2004 (200 200 (2004) 2004 (2007)	2005 1000 201 1003 New Suid	
1500	25	And the second	200 110 200 200 200 200 200 200		Lead Section 1	26	
ië	26			ań	äh		100] 401 200 2010 201
165		26			26		

Code No: 123BZ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 ELECTRICAL MACHINES-I

(Electrical and Electronics Engineering) Max. Marks: 75 Time: 3 Hours Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART-A (25 Marks) Write the expression for the mechanical force developed by the magnetic field for 1.a) a non-linear case. Why energy storing capacity of magnetic field is much larger than that of electric b) [3] field. [2] State the salient features of simplex winding. c) What is the action of commutator and brushes of a d.c machine. [3] d) [2] Define critical field and critical speed of a d.c Generator. e) Write the conditions necessary for the voltage build-up in a DC generator. [3] f) A d.c shunt motor is connected to a 3-point starter. Explain what would happen if g) the field circuit becomes open circuit with the motor running at no-load. [2] Draw the circuit model for Ward-Leonard system of speed control. h) State with reason whether field test on two identical dc series machines is i) regenerative method? Write the expressions for core losses and remedial measures to reduce them in a j) [3] de machine. (**50 Marks**) What is meant by singly-excited and doubly-excited electromechanical energy 2.a) conversion? Give two examples for each. The self and mutual inductances of the two exciting coils of a multiply-excited ...b) translator system are: $L_{11} = L_{12} = 3.6/(1+2x)$ $L_{12} = L_{21} = 1.8/(1+2x)$ Calculate the time average force and coil currents at x=0.3m when both the coils [5+5]are connected in parallel across a voltage source of 100cos314t. OR With one example derive the co-energy of a multi excited magnetic field system. 3.a) What are the causes for irrecoverable energy loss when the flux in the magnetic b) circuit undergoes a cycle?

Explain the effect of armature reaction in a DC shunt generator. How is its demagnetizing and cross-magnetizing ampere turns calculated? Draw the sketches for different methods of excitation of DC generators and write 5.a) the respective generated emf equations. A d.c. machine has 8 poles, lap connected armature with 960 conductors and flux per pole is 40 mWb. It is driven at 400 r.pm. Calculate the generated e.m.f. If now lap connected armature is replaced by wave connected, calculate the speed at [5+5]which it should be driven to generate 400V. Discuss the constructional details and working principle of 2-pole and 4-pole D.C 6. machines. Also discuss the performance characteristics of d.c generators. [10] OR State the applications of various types of generators according to their 7.a) characteristics. Two DC shunt generators are connected in parallel to supply a load of 5000 A. b) Each machine has an armature resistance of 0.03 Ω and field resistance of 60 Ω but the emf of one machine is 600V and that of the other machine is 640 V. What power does each machine supply? What is the necessity of starter in a DC motor? Explain the working principle of 8. 3-point starter with a neat sketch. Also explain about protective measures in the [10]starter. OR Enumerate the factors on which speed of a D.C motor depends. Explain briefly ...9 a) about speed control methods of a DC motor. A d.c motor takes an armature current of 74 A when flux is 10mWb. It develops a b) torque of 120 N-m. If armature current is changed to 45 A keeping the flux constant, determine the new torque developed. With the same flux, if entire load on the motor is removed, armature current is observed to be 6.8 A. Determine the torque required to overcome stray losses. With the help of neat circuit diagram, explain Swinburne's test and derive the 10. relations for efficiency (both for generator and motor) also state the merits and [10] demerits of this method. With the help of neat circuit diagram, explain Hopkinson's test and derive the relations for efficiency (both for generator and motor) also state the merits and

--00000--

demerits of this method.

Code No: 123AM

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 **SURVEYING**

(Common to CE, CEE)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a) State the principles of surveying.	[2]
b) List out the tape corrections.	[3] [2]
c) Differentiate between simple levelling and compound levelling. d) Define: Contour, Horizontal equivalent and Contour gradient.	[3]
a 1 1 - 14-4 and of Cimpson's rule	[2]
5. List out the formulae for computing the volumes	[3]
Define Transiting and swinging the telescope in theodolite surveying.	[2] [3]
h). List out the temporary adjustments of a theodolite. i) List out the methods for setting out simple curve by chain and tape.	[2]
j) Differentiate between stadia and tangential methods of tacheometry.	[3]

Part-B

(50 Marks)

(25 Marks)

2. Explain about classification of surveying.

[10]

The following were observed in a compass traverse. Correct for local attraction. [10]

Line	Fore bearing	Back bearing
AB	68° 15′	248 ⁰ 15'
BC	1480 45'	326 ⁰ 15'
CD	224 ⁰ 30'	46 ⁰ 00'
DE	2170 15'	38 ⁰ 15'
FA	327 ⁰ 45'	147° 45′

4. The following consecutive readings were taken with a dumpy level and 4 m levelling staff on a continuously sloping ground at 30 m intervals: 0.680, 1.455, 1.855, 2.330, 2.885, 3.380, 1.055, 1.860, 2.265, 3.540, 0.835, 0.945, 1.530 and 2.250 m. the R.L. of a starting point was 80.750 m.

a) Carry out reduction of heights by the collimation method.

b) Determine the gradient of the line joining the first and last points. [5+5]

OR List out the methods of contouring and explain any one method in detail. [10]

- 6. The following offsets were taken from a chain line to a hedge at regular intervals of 5.0 m: 2.72, 3.46, 5.23, 6.80, 4.86, 3.35, 3.00, 2.50, and 1.60 m. Determine the area included between the chain line and the hedge by using:
 - a) Mid-ordinate rule
 - b) Trapezoidal rule and

c) Simpson's rule.

7. A road at the formation level is 6 m wide and has a side slope of 2:1. The road is to have a constant R.L. of 200 m. The ground is level across the centre line of the road.

The following observations were made:

Figure 1 and 1	3444	MAN .	17003			100
Chainage (m)	0	20	40	60	80	100
Surface level along centre line of	204.6	203.0	200.8	201.6	202.0	200.2
road						

Estimate the volume of earth work.

[10]

[4+3+3]

8. List out the methods for measuring horizontal angle and explain any two methods in detail. [10]

OR

- 9. The observations were made on the top A of a flag AB on a hill from two instrument stations P and Q, 100 m apart, the stations P and Q being in the line with A...The angles of elevation of A at P and Q were 30° 05′ and 17° 52′ respectively. The staff reading upon the BM (RL = 311.29 m) were, respectively, 2.690 and 3.815 when the instrument was at P and Q, the telescope being horizontal. Determine the elevation of the foot B of the flag if AB is 3.5 m.
- 10. The following are the distances of the staff position from the instrument and the corresponding staff intervals. Calculate the tacheometric constants.

				1100	7
D (m)	20	50	100	-120	=
S (m)	0.195	0.495	0.997	1.197	

OR

11. The chainage of the intersection of two straights having the deflection angle of 50° is 1680.0 m. If the radius of the curve is 450 m, calculate the following:

---00O00---i...

a) Tangent distance

b) Length of the curve

c) Length of the long chord and

d) Apex distance.

[10]

Code No: 113AH

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November/December - 2016

...MATHEMATICS-III

(Common to EEE, ECE, EIE, ETM, AGE)

Time: 3 Hours

Max. Marks: 75

This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks: Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks) Find the particular integral of $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = \log x$. ::i:a) ::[2]...:

[3] Find the indicial equation of xy'' + 2y' + xy = 0. b)

[2] Express x^2 - x in terms of Legendre Polynomials. c)

Prove that $\tan x = \frac{J_{1/2}(x)}{J_{-1/2}(x)}$.

Find the analytic function whose real part is -y.

[3] Evaluate $\int (2x - iy) dz$ along y = x. f)

Find the singularity $\frac{z - \sin z}{z^{\frac{3}{2}}}$. Define residue at a pole. [2] 25. 26

g) h)

Find the critical points of $w = z + \frac{1}{z}$. [2]

Find the fixed points of $\frac{z+2i}{-2iz+1}$. [3]

(50 Marks)

Solve the differential equation in series. $\frac{d^2 y}{dx^2} + x \frac{dy}{dx} - 4y = 0$ around x = 0. [10] 2.

Solve the differential equation in series. $2x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + (1-x^2)y = 0$ around [10]

Prove that $\frac{d}{dx}(J_n^2 + J_{n+1}^2) = 2\left(\frac{n}{x}J_n^2 - \frac{(n+1)}{x}J_{n+1}^2\right)$.

Express $x^2 - 3x + 4$ in terms of Legendre Polynomials. [5+5]

Prove that $J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$. 5.a)

Prove that $\iint_{\mathbb{R}^n} P_n(x) (1 - 2xz + |z|^2)^{-1/2} dx = \frac{2z''''}{(2n+1)}$ [5 + 5]

Show that for the function $f(z) = (xy)^{1/2}$, the C.R equations are satisfied at the 6.a) origin but f'(z) does not exist. Evaluate $\int_{e^{z}(z-1)^{3}}^{\frac{1}{2}} dz$ where C is |z|=2. OR Find the analytic function whose real part is $\left(r - \frac{1}{r}\right) \sin \theta$. 7.aEvaluate $\int_{-\infty}^{\infty} \frac{e^{z^2} + z \sinh z}{(z - \pi i)^2} dz$ where C is |z| = 4. T5+51 Evaluate $\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}$ using residue theorem. [10] Expand $\frac{1}{z^2 - 3z + 2}$, as Laurent series. a) |z| < 1 b) |z| > 2 c) 1 < |z| < 2. [3+3+4]Find the image of the region between the lines y=0 and y=1/2 under the mapping .·10:a) $w = \frac{1}{-}$. b) Under the transformation $w = \frac{z - i}{1 - iz}$ find the image of the circle |z| = 1. [5+5] Find the image of the region between the lines y=0 and $y=\pi/2$ under the mapping $w = e^z$. Find the bilinear mapping which maps the points z = 1, -I, 2 into 0, 2, -i. [5+5] ---00O00:::- :::::

Code No: 113BR

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD R Tech II Year I Semester Evaminations November/December - 2016 B. Tech II Year I Semester Examinations, November/December - 2016 BASIC ELECTRICAL ENGINEERING

(Common to CSE, IT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

mr.c	49 M	41			(25 Marks)
1.0	Sate Ohm's law with an ex	ample.	100	A000.1 ecc.	[2]
1.a)	Obtain the expression for	movimum nou	ver transfer	red across load in	DC circuits
b)	Obtain the expression for	maximum pov	ver transfer	ica across issue	[3]
	using maximum power tra	nster theorem.			F- 1
c)	Write the value of form fa	ctor and peak f	actor for a	sinusoidal wavelo	rm. [2]
d)	Determine the impedance.	of series RLC	circuit with	$R=5 \Omega$, $L=2 mH$	and $C=5.nF$
	with an applied voltage of	$v(t)=10 \sin(31$	4(nt):		[3]
TTTT - 114	with an applied voltage of	of a transfe	emor? Writ	te its importance	[2]
e)	What is meant by Regulat	ion of a transfe	officer: with	te its importance.	[3]
f)	Distinguish between core	type and shell	type transfo	ormers.	L- 3
g)	Give the expression for to	rane developed	1 by 3-φ Inc	duction motor.	[2]
	A 4-pole d.c generator hav	ing lan wound	l armature	winding with 1020	conductors,
h)	What will be the EMF g	onersted in the	machine	when driven at 1:	500 rpm and
- The state of the	What will be the EMF g		. Triderinie	, , , , , , , , , , , , , , , , , , , ,	[3]
fini but	with a flux of 7 mWb.	177	Second free	***** ***	
i)	Define deflection torque i	n indicating in:	struments.		[2]
i)	Write any three advantage	es of MI instru	ments over	PMMC instrumer	its. [3]
J <i>)</i>	Wille ally three act and B				

PART-B

(50 Marks)

Explain the passive elements in brief. 2.a)

Obtain the equivalent resistance between the terminals a and b as shown in b) [5+5]figure 1.

State and explain Thevenin's theorem. Also draw its equivalent circuit. 3.a)

[5+5]State and explain superposition theorem. b)

Code No: 113AQ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 METALLURGY AND MATERIALS SCIENCE

(Common to ME, MCT, AME)

Max. Marks: 75 Time: 3 Hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

	PARI- A		(OF Manier)
1,a) b) c)	Name different types of bonds in solids	orties.	(25 Marks) [2]::: [3] [2] [3]
d) e) f) ig) h) i)	What is the importance of Normalizing? Write about properties of alloy steels. Differentiate between cast iron and steel. What is brass? Give its properties. What are cermets? Give an example. Write the applications of composites.		[2] ,.[3] ::[2]::: [3] [2] [3]
	PART-B:		(50:Marks)
2.a) b)	Explain Hume Rothery rules. Explain briefly different methods used to determ OR		[5+5]
3.a) b)	Classify alloy steels. Explain why alloying is do Derive Atomic packing factor for FCC crystals.		[5+5]
4.a) b)	Write briefly about methods used to construct p Draw and explain a phase diagram showing eut OR	ectic reaction.	[5+5]
5.a)	What is Allotropy? Explain Eutectoid transform Write about Equilibrium cooling and heating of	alloys	[5#5]
6.a) b)	Write about the effect of alloying elements on I Explain tempering process with cooling curve. OR	Fe-Fe₃C phase diagra	m. [5+5]
7.a) :b)	Write about the importance and applications of What is hardening? Explain different hardening	TTT diagrams.	[5 ‡ 5]

Ē.	b) Bri	b) Briefly describe the properties of aluminium and its alloys. OR O					
**************************************	10.a) Cl fib	assify composites or reinforced com rite about the prop	Enumerate the rapposites.	nerits of particle	ers. [m] [m]	osites over	
	11.a) W	rite about the diff	erent manuractur	ing methods of c	omposites.	[5+5]	
	26		00	O00		200 June 2	
15		ZĠ			25	ZĒ	
	al b	26		26			
B 200		an in	Will have done	1700 a.17 200 [170]	Characters	Section 1	Oct Ser
15			26		2000 1 200 2000 1 200 2000 1 200		
	an en	26					
17		* <u>#</u> ####		25	26	5 " " \$ 4 " \$ 2	

Code No: 113BV

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS (Common to CE, CEE)

Max. Marks: 75 Time: 3 Hours Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

		(
1.a)	What is 'derived Demand'?	[2]
b)	How is Price elasticity demand classified?	[3]
	Distinguish between 'Isocosts' and 'Isoquants'.	[2]
c)	Give any four examples on External economies of Scale.	[3]
e)	What do you understand by 'Opportunity cost'?	[2]
f)	What are the characteristics of Monopolistic competition?	[3]
g)	Explain the concept of Sealed bid pricing.	[2]
h)	What do you understand by 'ploughing back of profits'?	[3]
,	What is a contra-entry? Give an example.	[2]
.i) j)	How is EPS computed?	:[3]-

PART-B

(50 Marks)

(25 Marks)

Explain the Law of demand and point out its assumptions and exceptions. Supplement your answer with necessary diagrams. [10]

OR

What is Demand Forecasting? 3.a)

Examine the 'Trend Projection' method and 'Collective Opinion' method of b) [5+5]demand forecasting.

4.a) Explain the nature and managerial uses of Production function. [6+4]What is the managerial significance of 'Expansion path'? b)

What is Break-Even Point? 5.a)

Given fixed expenses at Rs. 7,260, selling price as Rs. 5 and variable cost as b) Rs. 3, calculate break-even point in terms of physical units of a bicycle [5+5]component.

	6.a) b)	What are the features of perfect competition? How is 'short run period	e +	197 (1999)	1777 2775	A	
_	7.	What is Marginal cost Marginal cost pricing.	······································	scuss the advan	tal and Working	Capital.	
	9	Describe briefly the var	OF ious sources av	vailable for mobil	izing long term f	inance: ::[10]	
	10.	What is Double-Entry advantages.	system of boo	ok keeping? Writ			
	11:	Define Ratio Analysis. solvency ratios.	State the met	hod: and significa	ance: of calculatin	ng∵yarious ∷[10]	
			ooO	000			
, ,e		26	Z5	26			
)	703 A1 21 121 21 121		en jan	Janes Janes Janes Janes Janes Janes	Professional Control	Was had	
/= (*)	24						
	26						
Ö		. 26		2005 (200 2005 (200 2006 (2005)	25		

Code No: 53004

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 SURVEYING

(Common to CE, PTE)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

What do you understand by main station, subsidiary station, base line and tie line? 1.a)

Give in a tabular form, the differences between prismatic compass and surveyor's b)compass.

The following angles were observed in clockwise direction in an open traverse: 2.a) $\angle ABC = 124^{\circ}15^{\circ}$; $\angle BCD = 156^{\circ}30^{\circ}$; $\angle CDE = 102^{\circ}0^{\circ}$; $\angle DEF = 95^{\circ}15^{\circ}$;

 \angle EFG=215⁰45['].

Magnetic bearing of the line AB was 215°30', what would be the bearing of line

What is an azimuth? What is the difference between the azimuth and the bearing of a b) survey line?

Describe briefly the temporary adjustments of a dumpy level. 3.a)

Describe with the help of sketches, the characteristics of contours.

db db db Write short notes on the Mass-Haul diagram. 4.a)

The following offsets were taken from a chain line to a hedge. b)

				A						T .	1 0 0
Distance (m)	10	15	12	18	24	36	48	60	72	81	90
Distance (III)	U				0.0		1.0	0.0	-2.0	2.2	2.6
Offset (m)	2.0	3.3	2.4	1.8	0.9	+1.5-	1.8	Like	1.5.0	2.3	0.0

Calculate the area enclosed between the chain-line, the hedge and the end-offsets by [7+8](i) Simpson's rule and (ii) Trapezoidal rule.

- Describe two different methods to determine the height of an inaccessible spire with 5.a) respect to a given benchmark, using a theodolite. Indicate the calculations required in each method.
 - In a trigonometrical measurement of the difference in level of two stations P and Q b) 10480m apart, the following data were obtained. With the instrument at P, the angle of elevation of Q, was 0°15'; with the instrument at Q, the angle of depression of P was 3'33"; the height of the instrument at P was 1.42 m; the height of the instrument at Q was 1.45 m, height of the signal at P was 3.95m and the height of signal at Q was 3.92 m. Find the difference in level between P and Q and the curvature and refraction correction. [5+10]Take Rsin 1 = 30.88m.

6.a): Derive an expression for the vertical distance by a tacheometer when the staff is vertical and the line of sight is inclined... Two distances of 20 m and 100 m were accurately measured out and the intercepts of the staff between the outer stadia webs were 0.19 m at the former distance and 0.99 m at the later. Calculate the tacheometric constants. tangential angles for setting out curves. Two tangents intersect at an angle of 150°. If they are to be connected by a 10° curve, b) Calculate various elements of curve that is: i) Length of curve ii) Apex distance iii) Tangent length iv) Radius of curve. 8.a) Write a short note on the applications of GIS: :::

Explain how do we find distance between two inaccessible points using Total station. [7+8]---00O00---

Code:No: 53017

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 THERMODYNAMICS

(Common to ME, AE, AME)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

What is the concept of continuum? How density and pressure are defined using this 1.a)

Consider in a particular Celsius scale, assigned the value of 0°C to steam point and

100°C to ice point. i) Using ideal gas as the thermometer medium set up a relationship between 0°C and pressure for a constant volume thermometer. Proceed to derive the correlation between the two Celsius scales. At what temperature are the two scales are

numerically equal? ii) What is the numerical value of absolute zero for the particular scale? What is 200K [7+8]in °C?

For a polytropic process, derive the following relation: 2.a) $Q_{1-2} = \frac{r-n}{r-1} \times \text{polytropic work transfer and } Q_{1-2} = \frac{r-n}{n-1} \times \text{adiabitic work transfer.}$

- b) 1kg of gas expands reversibly according to linear law from 4.2 bar to 1.4 bar. The initial and final volumes are 0.004m³ and 0.02m³, respectively. The gas is then cooled at constant pressure and finally compressed isothermally back to its initial state of 4.2 bar and 0.004m3. Calculate the work done in each process stating its direction. [7+8]Sketch the cycle on a p-v diagram.
- 3.a) Prove that the Kelvin Plank and Clausius statement of the second law of thermodynamics are equivalent to each other.
 - Three Carnot engines C1, C2 and C3 operate in series between two heat reservoirs, b) which are at temperatures of 1000K and 400K. Calculate the temperature of the intermediate reservoir if the amount of work produced by these engines in the proportion of 5:4:3.
- Draw a saturation curve on a T-s diagram and mention the different states of water on 4.a)
 - A cylinder of 50-litre capacity contains oxygen at 18°C and at a pressure of 10MPa. b)
 - i) the mass of oxygen in the cylinder,
 - ii) the molar volume
 - iii) the density of oxygen.

The molecular mass of oxygen 32kg/kmol.

[7+8]

5.a): What are the salient features of work transfer?: What are the salient features of work transfer?: b): A gas initially at a pressure of 510 kPa and a volume of 142 liters undergoes a process and has a final pressure of 170 kPa and a volume of 275 liters. During the process, the enthalpy decreases by 65kJ. Take Cv = 0.718 kJ/kg. K. Determine: i) change in internal energy, ii) specific heat at constant pressure, and iii) specific gas constant. What is an adiabatic saturation? When does the wet bulb temperature equal the 6.a)saturation temperature? At steady state, 100m3/min of dry air at 32°C and 1 bar is mixed adiabatically with a b) stream of oxygen (O2) at 127°C and 1 bar to form a mixed stream at 47°C and 1 bar. The kinetic and potential energy effects are negligible. Determine: i) Mass flow rates of dry air and oxygen in kg/min ii) The mole of fraction of dry air and oxygen in the existing mixture and [7+8]iii) Time rate of entropy production, in kJ/K.min. 7.a). ... Discuss the deviation of Stirling and Ericsson cycles from Carnot cycle. b). A high-speed oil engine operating on a dual combustion cycle has a pressure of libar and a temperature of 50°C before compression. Air is then compressed isentropically to 1/15th of its original volume. The maximum pressure is twice the pressure at the end of isentropic compression. If the cut-off ratio is 2, determine the temperature at the end of each process and a deal efficiency of the cycle. Take $\Upsilon=1.4$. 8.a) What are the causes of irreversibilities in an actual refrigeration cycle? Explain with the help of a T-s diagram. A refrigerator used R-12 as a working fluid and it operates on an ideal vapour compression cycle. The temperature of refrigerant in the evaporator is -20°C and in the condenser is 40°C. The refrigerant is circulated at the rate of 0.03 kg/s. Determine the coefficient of performance and capacity of refrigeration plant in the TR. [7+8] ---00O00----

Code No: 53019

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2016 PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Common to ECE, ETM)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

- What is random signal? How the probability concept can be used to analyze the 1.a) random signal?
- Show that the conditional probability satisfies the three axioms of probability. b)
- Let A and B are events in sample space 'S'. Show that if A and B are independent [5+5+5]Events then $\overline{A}B$, $\overline{A}B$ and $\overline{A}B$ are independent.
- Define 'Q' and error function? Explain how these functions are used to evaluate 2.a) the Channel noise in communication systems.
 - Find the probability of getting head in random experiment of tossing three coins. b) Find, plot and obtain the expression for both PDF and CDF? [7+8]
- Explain the equivalent electrical parameters of all statistical parameters. 3.a)
 - Find average value, dc power, ac power, rms value and total power of random b) Variable 'X' whose PDF is given by $f_x(x) = 1.5e^{-3|x|}$. [7+8]
- If 'X' and 'Y' are two independent normal Gaussian variables then prove that 4.a) PDF of random variable Z = X+Y is also Gaussian.
 - Find the joint PDF of two random variables 'X' and 'Y' whose joint CDF is given b)

by
$$F_{xy}(x, y) = \begin{cases} (1 - e^{-x^2})(1 - e^{-y^2}) & x \ge 0 \text{ and } y \ge 0 \\ 0, & Else \text{ where} \end{cases}$$
And also find the probability $P\{(1 < X \le 2) \text{ and } (2 \le Y < 3)\}.$

17 + 81

- Find the expression for joint PDF between two Gaussian random variables. 5.a)
- Two Gaussian random variables X_1 and X_2 with variance 9 and 4 respectively and b) covariance -3 are transformed to new random variables

$$Y_1 = -X_1 + X_2$$
 and $Y_2 = -2X_2 - 3X_2$. Find the variances of Y_1 , Y_2 and covariance.

- What is random process? Explain the statistical parameters of random process. 6.a)
- Auto Correlation Function of WSS random process is given by $R_{xx}(\tau) = e^{-\alpha|x|}$; b)
- a>0. X(t) amplitude modulates the carrier $\cos(\omega_0 t + \phi)$ such that Y(t)=X(t) $\cos(\omega_0 t + \phi)$, where ϕ is uniformly distributed between $(-\pi, +\pi)$. Find the ACF of [7+8]Y(t)?
- State and prove any 'THREE' properties of Power Spectral Density. 7.a)

b) Find PSD of ACF
$$R_{xx}(\tau) = \begin{cases} A \left[1 - \frac{|\tau|}{T}\right]; & -T \le \tau \le +T \\ 0; & Else\ where \end{cases}$$
 [7+8]

Explain what is thermal noise and derive the expression for it.

Explain the in phase and quadrature phase of band pass noise and its properties. 8,a) b) [7+8]---00O00--ki b

Code No: X0423 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 SIGNALS AND SYSTEMS (Electronics and Communication Engineering) Max. Marks: 80 Time: 3 hours Answer any five questions All questions carry equal marks Define various elementary continuous-time signals. Indicate them graphically. 1.a) Find the even and odd components of the following signal b) i) $x(t) = e^{\frac{j2t}{2}}$ ii) x(t) = u(t)[8+8]State the properties of the Fourier series. 2.a) Find the complex exponential Fourier series representation of the following b) signals: i) $x(t) = 4 \cos 2\omega_0 t$ iii) $x(t) = \sin (2t + \pi/4)$.

Discuss the merits and limitations of Fourier transform. 3.a) Using Fourier transform, find the convolution of the signals b) $x_1(t) = e^{-2t} u(t)$ and $x_2(t) = e^{-3t} u(t)$. [8+8]Obtain the conditions for distortionless transmission through a system and also 4.a) draw them:...: Let the system function of an LTI system be $1/(j\omega + 3)$. What is the output of the b) [8+8]system y(t) for an input $(0.5)^t u(t)$? Write the properties of convolution. 5.a) Find the convolution of the following signals by graphical method. (iii) [6+10] $x_1(t) = u(t+1)$ and $x_2(t) = u(t-2)$ Explain how Band pass signals are sampled. 6.a) Discuss Natural and Flat-top sampling of low pass signals. [8+8]b) Distinguish between unilateral and bilateral Laplace transforms. ..7.a). [6+10]What is ROC? Discuss the ROCs of various classes of signals. State and prove the Parseval's relation. 8.a) Find the Z-transform of: b) i) $x(t) = a^n \sin(n\pi) u(n)$. ii) x(t) = u(n) - u(n-4). [8+8]

---00O00---

Code No: 223AB

7.a)

b)

suitable example.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Pharmacy II Year I Semester Examinations, November/December-2016 PHARMACEUTICAL ORGANIC CHEMISTRY - II

Time: 3hours Max.Marks:75

Note:	This question paper contains two part Part A is compulsory which carries 2 Part B consists of 5 Units. Answer at carries 10 marks and may have a, b,	25 marks, Answer a ny one full questio	n from each unit. Eac	h question
		PART-A	(2	5 Marks)
1.a) b)	Give the general characteristics of he Explain in brief about the Electrophi pyrrole, with mechanism.	lic attack on aroma	atic five-membered he	[3]
c)	Give the reactions for Nitration of Is			[2]
d)	Give the synthesis of oxazole by Rol	oinson-Gabriel Syl	nthesis. Iono polorized light wi	[3]
e)	What is mean by plane polarized light determining the stereochemistry of a	nt? Expiain now pi	iane potarized fight wi	[2]
f)	Write brief note on chirality with sui	table examples.		[3]
g)	What are Polynuclear aromatic hydr	ocarbons? Explain		[2]
h)	Give the Definitions of nucleic Acid	s, nucleotides, nuc	eleosides.	[3]
i)	What is Beckmann rearrangement?			[2]
j)	Describe briefly about Wittig reaction	on.		[3]
+++++ F4+	entre, 1931			
600m. F40		PART- B	(5	50 Marks)
2.a)	What is indole? Give its resonating s		(5	50 Marks)
2.a) b)	What is indole? Give its resonating s Explain how indole is prepared by v	structures. arious methods.	(5	50 Marks) [5+5]
b)		structures. arious methods.	211 212 312	[5+5]
0.000	Explain how indole is prepared by v Explain that pyridines are Isoelectro characters of pyridines.	structures. arious methods. OR nic with and analo	gous to benzene. Give	[5+5] the general
b)	Explain how indole is prepared by v Explain that pyridines are Isoelectro	structures. arious methods. OR nic with and analo	gous to benzene. Give	[5+5] the general
b) 3.a)	Explain how indole is prepared by v Explain that pyridines are Isoelectro characters of pyridines. Give the details of Hantzsch synt mechanism. What is pyrimidine? Give its structor Give the reactions of pyrimidine more	or or one of the prepare and describe he olecules with one e or	pgous to benzene. Given paration of pyridines ow it is been prepared. xample each.	[5+5] e the general with suitable [5+5]
b) 3.a) b)	Explain how indole is prepared by v Explain that pyridines are Isoelectro characters of pyridines. Give the details of Hantzsch synt mechanism. What is pyrimidine? Give its structor Give the reactions of pyrimidine modules. Describe the general methods of the	or one of Bernard of B	paration of pyridines ow it is been prepared. xample each. nzimidazoles.	[5+5] the general with suitabl [5+5]
b) 3.a) b) 4.a) b)	Explain how indole is prepared by v Explain that pyridines are Isoelectro characters of pyridines. Give the details of Hantzsch synt mechanism. What is pyrimidine? Give its structor Give the reactions of pyrimidine models are provided by the control of the provided by the control of the	or one of Bernard of B	paration of pyridines ow it is been prepared. xample each. nzimidazoles. le of each from electro	[5+5] the general with suitable [5+5] [5+5]
b) 3.a) b) 4.a) b) 5.a)	Explain how indole is prepared by v Explain that pyridines are Isoelectro characters of pyridines. Give the details of Hantzsch synt mechanism. What is pyrimidine? Give its structo Give the reactions of pyrimidine mod Describe the general methods of the Explain the reaction of thiazoles by	or one cannot be structures. arious methods. OR nic with and analous hesis for the prepare and describe healecules with one erope of the preparation of Bergiving one example.	paration of pyridines ow it is been prepared, xample each. nzimidazoles. le of each from electro	[5+5] the general with suitabl [5+5]

Write about Absolute configuration (D/L) nomenclature with suitable projection formulae.

Explain how the racemic mixtures are resolved by using resolution techniques. Give

	8;a). b)	Describe in detail a	about a brief acc	count on structure of naphthale OR	DŅĀ;	[5+:	5]
	9.a) b)	Write about the nap	ohthacene resor structures of u	nance structures, electric acid and explain a	etron density a about it.	and reactivity. [5+:	5]
100 mm	:::10a) b)	What is Männich re Give in detail the a	eaction? Explai			[5+.	5]
	11.a) b)	Illustrate the mechanisms Give the important	anism of Lossen re	n rearrangement. arrangement in phar	maceutical ch	emistry. [5+	5]
	4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	5-1-1 5-1-1 1-1-1		00 O 00	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		10,10
		26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		200 444 20 200 20 200 20 200	Seed Gee Speed Been Been Been	26
				ie:			
		TOPE.				PA	
422	24440 (5444C)	Boson Cure",	(**II H**	2000 200		999 (33)	
		201 10	200, 20	program	2775 1/2	.443 195	9.5
****		nt. til	100 Avr.	en en	5270 200	A., 5775	6 5.J
					202 - 122		
	**************************************	Z6		26			ton for
Ö							
- VP	2000 2000 2000 2000 2000 2000	26		26	25		* 26

.--Code No: R9205 .-- .--...

B. Pharmacy II Year I Semester Examinations, November/December-2016 ANATOMY PHYSIOLOGY AND PATHOPHYSIOLOGY

Max.Marks:75 Time: 3hours

Answer any five questions

		All questions	carry equal mark	S S	
1.a) b)	Describe the various Write the function		and its functions.		[10+5]
(1.2 a) b)	Compațe: ¡and parasympathetic a Write a short note	and sympathetic n	ervouš šyštem.	20110 110	functions of [10+5]
3.	Explain the gross	anatomy of urina	ry system and add	a note on mic	turition. [15]
4:a). b)	Enumerate Sperm Define: parturitio	natogenesis with the modern of the state of	he help of a well l	abeled diagran	1? [10+5]
5	Describe the anat	omy of liver and e	explain its functio	ns in detail?	[15]
6	Describe the mic storage and release	eroscopic structur se of thyroid horm	e of thyroid glan	d and explain	the synthesis,
7.a) b)	Enumerate the me Write a short note		-		[10+5]
8.a) b)	Define: Apoptosi What are the ca changes involved	uses of inflamm	ation?::Explain ir	ı detail the va	arious vascular [5+10]
		0	00O00		
					24
			arrey (see	Zń	26

Code No: 123AH

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 **MATHEMATICS-III**

(Common to EEE, ECE, EIE, ETM)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	Dacii daestion carre		*		
	26 2	PA	RT-A		(25 Marks)
1.a)	Solve $(x^2D^2+xD-4)y=0$.				[2]
b)	Find the particular solution	of $4x^2$	$\left(\frac{d^2y}{dx^2}\right) + 8x\left(\frac{dy}{dx}\right) +$	$y = \frac{4}{\sqrt{x}}$	[3]
(c)	Express $x^2 - 1$ in terms of	$P_{ii}(x)$	j	12. 6%	[2] [3]
d) e)	Express J_2 in terms of J_0 and Show that $f(z) = z \mid z \mid$ is no	ot analyti	e anywhere.		[2]
f)	Find the harmonic conjuga	u = 0	2xy + 3y.		[3]
g) h)	Expand $\frac{1}{(z+1)}$, when $z > 1$ Find the co-efficient of z^3	l, in the ext	pansion of	1.5	[2] [3]
11)	Tind the 60 officient of 5		z ² (1 –	z)	
1)	Evaluate the residue of	e .	at $z = 0$.		[2]
A)	7	$\left(z^2+9\right)$	2 82	=1 A#	
j)	Find the image of c < y <	d under tl	ne transformation	$w = e^{x}$	[3]

PART-B

(50 Marks)

2. Solve in series
$$3x^2 \left(\frac{d^2y}{dx^2} \right) + x \left(\frac{dy}{dx} \right) + y = x$$
.

3. Solve
$$(1+x)^2 \left(\frac{d^2y}{dx^2}\right) + (1+x)\left(\frac{dy}{dx}\right) + y = 4\cos\log(1+x)$$
. [10]
4.a) Prove that $\cos(x\cos\theta) = J_0 - 2J_2\cos2\theta + 2J_4\cos4\theta$ -----

4.a) Prove that
$$Cos(xCos\theta) = J_0 - 2J_2Cos2\theta + 2J_4Cos4\theta$$

b) Prove that $sin(xcos\theta) = 2J_3cos3\theta + 2J_5cos5\theta$ [5+5]

Show that $\int_{-1}^{1} p_m(x) p_n(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$ [10]

- Find the analytic function whose real part is $\left(r \frac{1}{r}\right) \sin \theta$
 - Evaluate $\int_{C} x^{2} y \, dx + (x^{2} y^{2}) \, dy$ form (0,0) to (1,3) along y=x², [5+5]b)

- If $F(a) = \int_{C} \frac{(3z^2 + 7z + 1)}{(z a)} dz$ using cauchy's integral formula where C is |z| = 2. [10] Find F(1), F(3) F''(1-i).
- Expand $\frac{z}{(z+1)(z-3)}$ where (a) c:|z|>3 (b) c:|z|<1. [10]
- Expand $f(z) = \frac{z+3}{z(z^2-z-2)}$ in power of z 9.
- (a) c: 0 < |z| < 1 (b) c: 1 < |z| < 2 (c) c: |z| > 2. [10] Prove that under the transformation w=1/z, the image of the lines y=x-1 and y=010.a) are the circle $u^2 + v^2 - u - v = 0$ and the line v=0, respectively.
 - Find the bilinear transformation which maps the points $(-1,\infty,1)$ to (-1,-2,i). [5+5] OR
- Find the image of the triangle with vertices i,1+i and 1 in Z-plane under the transformation w=3z+4-2i. . 11.a) transformation w=3z+4-2i.
 - Show that the transformation $w = \frac{5-4z}{4z-2}$ transforms the circle |z|=1 into a circle of radius unity in w-plane and find the centre of the circle. [5+5]

Code No: 123BR

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 BASIC ELECTRICAL ENGINEERING

(Common to CSE, IT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

			PART- A		(25 Marks)
1.a)	State the Superposit	ion theorem.			[2]
b)	Distinguish between	potential di	fference and electro	omotive force.	[3]
c)	Define Periodic fun	ction and Cy	cle.		[2]
d)	What is the significa	ance of form	factor and peak fac	ctor?	[3]
f)	What is the purpose			A. 4. 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[2]
f)	Define the regulation				[3]
g)	List the basic requir				[2]
h)	What are the variou	s losses in a	D.C. Motor?		[3]
i)	What are the variou	s classification	ons of instruments?	?	[2]
j)	What are the variou	s types of Ar	nmeters and voltm	eters?	[3]
		277		1 1 1 1	
			PART-B		
					(EO N.E. 1 -)

(50 Marks)

2.a) Explain the Kirchhoff's laws.

b) By using star-delta transformation for the following figure 1. Find the current 'I' supplied by the battery? [5+5]

Using method of superposition, determine the current through the $5k\Omega$ resistors for the circuit in figure 2. [10]

- Explain the concept of Average value and RMS value. 4.a)
- An alternating current varying sinusoidally, with a frequency of 50Hz, has an rms b) value of 20A. Write down the equation for the instantaneous value and find this value at (i) 0.0025s, (ii) 0.0125s after passing through a positive maximum value. At what time, measured from a positive maximum value, will instantaneous current be 14.14A?

OR

- In an a.c. circuit, $v = 200 \text{ Sin } (\omega \text{ t} + 30^0) \text{ V}$, $i = 15 \text{ Sin } (\omega \text{ t} 30^0) \text{ A}$. Find reactive 5.a)
- In a series RC circuit, the values of R = 100 Ω and C = 25 μF . A sinusoidal b) voltage of 50 MHz is applied and the maximum voltage across the capacitance is 2.5V. Find the maximum voltage across the series combination and also [5+5]determine the apparent power.
 - Explain the transformer on no-load with phasor diagram. 6.a)
 - A 50Hz single phase transformer has 6600V/400V. Having e.m.f per turn is 10V b) and the maximum flux density in the core is 1.6 Tesla. Find the:
 - i) Suitable number of primary and secondary turns
 - ii) Cross sectional area of the core.

[5+5]

A 25 kVA, 2200/220V, 50Hz single phase transformer obtained the following test results.

OC test (L.V.side) = 220V, 1.2A, 100 w

SC test (H.V.side) = 100V, 7 A, 310w

Calculate the parameters of the equivalent circuit of transformer referred to L.V. [10]side and draw the equivalent circuit.

- Explain the constructional details of a D.C. Generator with neat sketches. [10] 8.
 - Derive the torque equation of induction motor. 9.a)
 - A three-phase induction motor runs at 1440 rpm at full load when supplied power b) from 50 Hz, 3-phase line. Calculate i) slip at full load ii) frequency of rotor voltage iii) speed of rotor at a slip of 10%. [5+5]
 - Describe the moving coil permanent magnet instrument with neat circuit diagram. 10.

OR

Explain the essential requirements of indicating instruments with necessary 11. [10] diagrams.

Code No: 123BV

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS (Common to CE, CEE)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

	PARI- A		
	Write brief notes on the following: a) Nature of Managerial Economics. b) Factors governing Demand forecasting.	26	(25 Marks) [2] [3]
26	c) Isoquants. d) Break-Even Point. e) Monopolistic competition. f) Sole Proprietor. g) Working capital cycle. h) Shares. i) Journal. j) Trial Balance.		[2] [3] [2] [3] [2] [3] [2] [3]
	PART-B		(50 Marks)
2.a) b)	Define Demand. What are the determinants of demand? Describe the types of Elasticity of demand. OR	,	[5+5]
3.a)	Explain the importance of Managerial Economics.		pin, pin
b)	What are the exceptions to the theory of law of demand	?	[5+5]
1,000	TOTAL AND		S
4.a)	Explain Cobb-Douglas Production function.		
b)	Differentiate between Fixed Cost and Variable Cost. Gi	ve suitable ex	xamples. [5+5]
25	OR OR	CD 801	(D.40)
5.a)	What do you understand by Returns to scale? Discuss.		
b)	Calculate the BEP in units and Rupees using the follow Selling price per unit Variable cost per unit Rs. 60 Rs. 60	ing details:	
300 -00	Fixed costs Rs. 20,000	post100	ירב ייבו
	Actual Sales Rs. 2,00,000.		[5+5]
6.a)	Illustrate any four methods of Pricing.		
b)	Explain the salient features of a Joint Stock Company.		[5+5]
0)	OR		F 1

- State the conditions in which Penetration and Skimming pricing strategies can be 7.a)
- Examine the merits and demerits of Sole Proprietorship form of business .-. b) organization.
 - Explain the meaning of Capital. What factors influence the volume of long term 8.a) capital of business?
 - Enumerate any five methods of raising long term finance for a business b) enterprise. OR

- In what respect Modern capital budgeting techniques are superior to Conventional 9.a)
 - Identify the merits and demerits of Payback period technique of capital budgeting. b) [5+5]
- Every "debit" must have its corresponding "credit". Explain. 10.a)
 - How do you validate the various items given in a trial balance? [5+5]b)

OR

From the following Trial balance of Giri Traders, prepare final accounts for the 11. year ended 31.12.2013.

_wit 1666		Who.	A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		- PC-1	
Particulars			Debit Rs.			edit Rs.
Capital						30000
Cash				5000		
Purchases	.07,	30	APPEL APP	19000	Physical Control	[54)]
Purchase Returns	i vers		100 F.			500
Sales						20000
Wages				1000		
Salaries				800		
Factory Insurance				200		
Rent	700		40.00	650		
Carriage	- 400	100	ires ter	150	12000 2000	Sum ex
Office Expenses				200		
Carriage Outwards				200		
Machinery				8000		
Furniture			100	6000	H001 440	
Discount allowed	67	134	Fire to the	250	v:: 10	- E. J. F.
Discount received						1500
Goodwill				3550		
Opening stock				1500		
Debtors				8500		
Creditors	2.27		40 ±+1			3000
Total				55000		55000

Adjustments:

Value of Closing Stock Rs. 2200

Outstanding Salaries

Rs. 200

Prepaid Rent

Rs. 150.

Code No: 113AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December-2016 THERMODYNAMICS

(Common to AE, AME, ME, MSNT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

Define control volume and control surface. 1.a) The pressure in a constant gas thermometer is measured as 32 mm of Hg above b) atmospheric pressure at triple point. Determine the temperature in ⁰C, when the pressure is 76 mm of Hg above atmospheric pressure. The barometer reads 752 mm of Hg. Define and explain the flow work. c) Calculate the percent error in C_{ν} that would result if $C_p = C_{\nu}$ is assumed for liquid d) [3] water at 1 atm and 27°C. [2] Define the pure substance. e) Calculate specific enthalpy, specific volume and density of 1 kg of steam at a f) [3] pressure of 1.9 MPa, having a dryness fraction 0.85. [2] What are mass fraction and mole faction? g) h') A volumetric analysis of a gaseous mixture gives the following results: $O_2 = 4.0\%$ $CO_2 = 12.0\%$ CO=2.0% $N_2 = 82.0\%$ Determine the analysis of gas mixture on the mass basis, the molecular weight and gas constant on the mass basis for the mixture. Assume ideal gas behavior. Compare Otto, Diesel and Dual cycles for given compression ratio. j) A refrigerator has a working temperature in the evaporation and condenser coils of -30°C and 30°C, respectively. What is the maximum possible COP of the refrigerator?

PART - B

(50 Marks)

[3]

Define thermodynamic property, state, path process and cycle. 2.a)

The temperature scale of a certain thermometer is given by the $t = A \ln +B$. where A b) and B are constants and P is the thermometric property of the fluid of the thermometer. At ice point and steam point, if the thermometer property is found to be 1.5 and 7.5 respectively, what will be temperature corresponding to the thermometric property of 3.5 on Celsius scale?

OR

Differentiate between closed system and open system. 3.a)

A spherical balloon contains 5 kg of air at 200 kPa and 500 K. The balloon material is b) such that the pressure inside is always proportional to the square of the diameter. Determine the work done when the volume of the balloon doubles as a result of heat

Prove that $dS = \frac{8Q}{2}$ for a reversible process and show that the entropy is a property of 4.a) Steam initially at 1.5 MPa and 300°C expands reversibly and adiabatically in a steam turbine to 40°C. Determine the i) Condition of steam after expansion, ii) Work done by the turbine per kg of steam. [5+5]5.a). Sketch the thermodynamic mnemonic diagram and explain its use to obtain Gibbsian equations and Maxwell relations. b) One kg of ice at -20°C is exposed to the atmosphere which is at 20°C. The ice melts and comes into thermal equilibrium with the atmosphere. Calculate the entropy increase of the universe. Take Cp of ice as 2.093 kJ/kg.K and latent heat of the fusion of ice as 334.5 KJ/kg. Explain why food cooks faster in a pressure cooker than in conventional cooking? 6.a) Find the internal energy of 1 kg steam at a pressure of 10 bar, when the condition of b) i) Wet with a dryness fraction of 0.85, ii) Dry and saturated, and iii) Superheated, the degree of superheat being 50°C. The specific heat of superheat steam at constant pressure is 2.01 kJ/kg. K. [5+5]OR 7.a) Explain the procedure of obtaining dryness fraction of steam by a throttling calorimeter. b) A room of 1000 m³ volume, contains air at 1 bar and 300 K. in the room, there is balloon which contains air at 300 K. suddenly, the balloon bursts. Before any air can escape through the doors or windows, the pressure in the room becomes 1.3 bar, while its temperature is still 300 K. if the volume of balloon was 50 m³, find: i) Mass of air originally in the room (outside the balloon), ii) Initial pressure in bar of air in the balloon, and iii) Final mass of air in the room. 8.a) Express Dalton's law of partial pressures. Does this law hold exactly for ideal gas mixtures? A vessel of volume 0.4 m³ contains 0.45 g of carbon monoxide and 1 kg air, at 15°C. b) Calculate the particle pressure of each constituents and the total pressure in the vessel. The air contains 23.3 % oxygen and 76.7% nitrogen by mass. Take the molar masses of carbon monoxide, oxygen and nitrogen as 28, 32 and 28 kg/k mol, respectively. [5+5]9.a) Prove that the specific humidity is given by w=0.322 $\frac{p_y}{p-p_y}$ Where p_y = partial pressure of water vapour. P= total pressure of air. Air enters a window air conditioner at 1 atm, 30°C and 80% RH at rate of 10 m³/min b) and it leaves at saturated at 14°C, a part of moisture, which condenses during the process is also removed at 14°C. Determine the rate of heat and moisture removal from air.

	10.a) b)	Define (i) work ratio (ii) A four-stroke, four-cycle on Otto cycle. The cletemperature are 1 bar an following: i) The air standard efficiti) The mean effective p	nder petrol e learance vol id 47°C. If th ency of the c	ngine of 250-m ume is: 0.0100 e maximum pro	im bore and 375-52 m ³ . The init	mm stroke words	
Ś	11.a) b)	Why is the reversed C realistic model for refrig Air enters the compress with a volumetric flow turbine inlet temperature	gerator cycles or of an idea rate of 1.5 m	s? I Brayton refrig 1 ³ /s. if the com	geration cycle at	1 atm and 270 K	
	25	i) the net power input ii) the refrigeration capa iii) coefficient of perform	city and	ŽĐ		[5+5]	
1m	276	Second Second	0	oOoo			
			26	26	il in		
	60. <u>60</u> 60. 60	Section 199	for, p.22 v25, 1071 top full	English	ATTS ATT ATTS EXTENSION	James 1955 Land Homes Toxico 1919	3
, 450 1460 1461	26				Zö		
			na ji 15 Jen 16 Jen 16 Jen	žť.	24	25	

Code No: 113BP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 DATA STRUCTURES

(Common to CSE, IT)

		(Comr	non to CSE, IT)		
Time:	3 Hours			Ma	ax. Marks: 75
Note:	This question pape	r contains two	parts A and B.		
	Part A is compulso			wer all questions	in Part A. Part
	B consists of 5 Uni				
	Each question carri	ies 10 marks a	nd may have a, b,	c as sub question	is.
51115 July 1	2000		45545	1545	
447	1		PART- A		
					(25 Marks)
1.a)	Write about Recurs	sive Algorithn	ns.		[2]
b)	Write brief note on	_			[3]
c)	Write the Queue A	-			[2]
d)	Write the steps for		e postfix expression	n,	[3]
e)	Write about Multi				[2]
f)	Define Threaded B	_	•		[3]
g)	Define Sorting and	*	ng Methods.		[2]
h)	What is Division F	lash Function	?		[3]
i)	Write about Red-B	lack tree.			[2]
j)	Write about Binary	Search Tree.	not had		[3]
			PART-B		
					(50 Marks)
2.a)	Explain Theta nota	tion with exam	nple.		
b)	Explain about Circ	ular linked lis	ts.		[5+5]
diam that	Nova find		OR	Deer Teer	
3.a)	Explain Big O Not		_		
b)	List and explain ab	out Double L	inked List operatio	ons,	[5+5]
4.a)	Write about Stack		-		
b)	Discuss about the	various repres		ie.	[5+5]
fire food	Fine Soil	Sies Steff	OR En la	CI.	
5.a)	Write a C Program		•		rc . c1
b)	What is ADT? Wr	ite the ADT to	or Stack Operation:	3.	[5+5]
(a)	White of Dunganon	to implement	DEC		
6.a)	Write a C Program Explain Binary Tre	-			[5+5]
b)	Explain Dinary TR	e will all exa	OR		
7.a)	Explain Adjacency	matrix Grant		nethod:	
b)	Explain Adjacency Explain about Min				[5+5]
0)	Expinit acoust min	rreap operation	no min an enamp	~·	[0.0]

	8.a) b)	Write a.C. Program Explain Separate C	haining in Hashi	ng. :::::		:[5+5]	
	9.a) b)	Explain Selection S Explain about Coll	Sort with an exar	nple.	ning.	[5+5]	
	····10:a) :·b)	Explain about Spla Discuss about AVI	y Tree with an ex L Tree Rotations.	xample.	26	 [5+5]	
	11.a) b)	Explain about B-T Write a program to	ree of order m w	ith an example.		[5+5]	
	25		0	0000	100 g 100 100 Aug 1	26	
	erat era era bros						
	25		26	25			
Ö			The state of the s	1112 P. 1			
	Total Property						
		26					
	in this						

Code No: 113AM JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 **SURVEYING**

(Common to CE, CEE, AGE)

Time:	3 Hours	(, , , ,	Max.	Marks: 75			
	- The state of the	11 100	,	111				
Note:	This question paper co			Jan 'm'				
	Part A is compulsory which carries 25 marks. Answer all questions in							
	Part B consists of 5				each unit.			
	Each question carries	10 marks ar	nd may have a, b, c a	as sub questions.				
,iii, ,ii	A	resort	A TOTAL CASE	a was a sale	1 ⁰⁰⁰ 100			
	100	P	ART- A	Source See	(25 Manlan)			
4	11.00	, C 1	'0		(25 Marks)			
1.a)	What are the different			nd give the signif	[2]			
b)	Mention different type each.	es of scales	used in surveying at	id give the signif	[3]			
0)	What do you man by	a contour?			[2]			
c) d)	Mention different type	a contour:	rary adjustments	THE SEC.	[3]			
e)	What is a field note bo		rary adjustinento.	(BraseCeccC	[2]			
f)	Draw different types of		ient.		[3]			
g)	Mention different type				[2]			
h)	List out the permanent				[3]			
i)	Differentiate simple as			1000	[2]			
j)	Mention three segmen			1	[3]			
0,	•							
		_						
		J	PART-B					
					(50 Marks)			
2.	Explain the different r	nethods of 1	plane table surveyin	g with neat diagra	am. [10]			
2.	2007 200	nethods of 1	plane table surveyin	g with neat diagra	am. [10]			
2.		nethods of 1	plane table surveyin	g with neat diagra	am. [10]			
-3:	Explain the working p	nethods of porinciple of	plane table surveyin OR EDM with suitable o	g with neat diagra	[10]			
2. -34.	2007 200	nethods of porinciple of	plane table surveyin OR EDM with suitable or suitabl	g with neat diagra	am. [10]			
4.	Explain the working p Define levelling and d	nethods of porinciple of	plane table surveyin OR EDM with suitable of levelling or constant types of levelling or constant types.	g with neat diagradiagram.	[10] [10]			
-3:	Explain the working p Define levelling and d What are the differen	nethods of porinciple of	plane table surveyin OR EDM with suitable of levelling or constraints.	g with neat diagradiagram.	[10] [10]			
4.	Explain the working p Define levelling and d	nethods of porinciple of	plane table surveyin OR EDM with suitable of levelling or constraints.	g with neat diagradiagram.	[10] [10] [10] Discuss in			
4.	Explain the working p Define levelling and d What are the differen	orinciple of liscuss differnt methods	plane table surveyin OR EDM with suitable of the contour surveying the contour surveyi	g with neat diagradiagram. Ing in detail. Ing and plotting?	[10] [10] [10] Discuss in [10]			
4. 5. 6.	Explain the working p Define levelling and d What are the different detail. How to calculate area	orinciple of liscuss differnt methods	plane table surveyin OR EDM with suitable of rent types of levellin OR of contour surveyin and irregular boundator	g with neat diagradiagram. Ing in detail. Ing and plotting? Iries? Explain.	[10] [10] [10] Discuss in [10] [10]			
4. 5.	Explain the working p Define levelling and d What are the different detail.	orinciple of liscuss differnt methods	plane table surveyin OR EDM with suitable of rent types of levellin OR of contour surveyin and irregular boundator	g with neat diagradiagram. Ing in detail. Ing and plotting? Iries? Explain.	[10] [10] [10] Discuss in [10] [10]			
4. 5. 6.	Explain the working p Define levelling and d What are the different detail. How to calculate area Discuss the different r	orinciple of liscuss differnt methods of regular a	plane table surveyin OR EDM with suitable of levelling of contour surveying and irregular boundators. OR estimating capacity	g with neat diagram. Ing in detail. Ing and plotting? Tries? Explain. Of a reservoir in o	[10] [10] [10] [10] [10] [10] [10]			
4. 5. 6.	Explain the working p Define levelling and d What are the different detail. How to calculate area	orinciple of liscuss differnt methods of regular a	plane table surveyin OR EDM with suitable of levelling or of contour surveying of contour surveying or contour s	g with neat diagram. Ing in detail. Ing and plotting? Tries? Explain. Of a reservoir in o	[10] [10] [10] Discuss in [10] [10]			
3. 4. 5. 6. 7.	Explain the working p Define levelling and d What are the different detail. How to calculate area Discuss the different r What is the working p	orinciple of a methods of regular a methods of orinciple of orinciple of	plane table surveyin OR EDM with suitable of the surveying of contour surveying of contour surveying on the surveying of the surveying of contour surveying on the surveying of contour surveying of	g with neat diagram. Ing in detail. Ing and plotting? Iries? Explain. Of a reservoir in content of the explain.	[10] [10] [10] [10] [10] [10] [10] [10]			
4. 5. 6.	Explain the working p Define levelling and d What are the different detail. How to calculate area Discuss the different r	orinciple of a methods of regular a methods of orinciple of orinciple of	plane table surveyin OR EDM with suitable of the surveying of contour surveying of contour surveying on the surveying of the surveying of contour surveying on the surveying of contour surveying of	g with neat diagram. Ing in detail. Ing and plotting? Iries? Explain. Of a reservoir in content of the explain.	[10] [10] [10] [10] [10] [10] [10] [10]			
4. 5. 6. 7.	Explain the working positive detail. What are the different detail. How to calculate area Discuss the different rewards what is the working positive detail.	orinciple of liscuss differnt methods of regular a methods of orinciple of li reiteration	plane table surveyin OR EDM with suitable of the surveying of contour surveying of contour surveying of contour surveying on the suitable of contour surveying of contour surve	g with neat diagram. diagram. ng in detail. ng and plotting? aries? Explain. of a reservoir in content of the content of	[10] [10] [10] [10] [10] [10] [10] [10]			
3. 4. 5. 6. 7.	Explain the working p Define levelling and d What are the different detail. How to calculate area Discuss the different r What is the working p	orinciple of liscuss differnt methods of regular a methods of orinciple of li reiteration	plane table surveyin OR EDM with suitable of the surveying of contour surveying of contour surveying of contour surveying on the suitable of contour surveying of contour surve	g with neat diagram. diagram. ng in detail. ng and plotting? aries? Explain. of a reservoir in content of the content of	[10] [10] [10] [10] [10] [10] [10] [10]			

Max. Marks: 75

Code No: 113BZ

Time: 3 Hours

e)

f)

g)

h)

i)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 **ELECTRICAL MACHINES-I**

(Electrical and Electronics Engineering)

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART-A (25 Marks) What is energy balance equation? Explain. 1.a) [2] Give the expression for force/torque developed in a multi excited magnetic field system. b) c) Write short notes on Armature reaction in a dc machine. [2] What are the uses of laminated core in a d.c machine? [3] (d) Why does saturation curve starts from some value higher than zero?

PART-B

How does a dc motor differentiate from a dc generator in construction?

How does various losses occurring in a dc machine vary with the load?

(**50** Marks)

[2]

[3]

[2]

[3]

[2]

[3]

2.a) For singly excited magnetic system derive the expression for mechanical force and mechanical work done. Make suitable assumptions.

What are the advantages of analyzing energy conversion device by field energy concept?

[5+5]

OR

- Define and explain the concept of transformer emf and motional emf in a dc machines. 3.a)
 - Describe relationship between energy and co-energy in a magnetic field system. [5+5] b)
- 4.a) What is meant by commutation process in a dc machines? How is voltage commutation achieved in dc machines?
 - Derive the expression for EMF generated in DC generator. [5+5]b)

Explain the constructional features of d.c machine with a neat sketch. 5.a)

What is meant by OCC of a generator?

What is the significance of back emf in a dc motor.

What is meant by energy loss in a dc motor? Explain.

- Differentiate lap, wave winding and also draw the model for each case. b) [5+5]
- Draw and explain model no load curve for self excited DC generator. 6.a)
- How to find critical resistance of a DC shunt generator? Explain in detail. [5+5]

OR

7.a) Explain Explain the pr	ain external and i ain the condition rocedure of paral	nternal characters to be fulfilled lel operation.	ristics of DC shur for parallel opera	nt generator. tion of dic serie	s motors Explain
			OC motor. Derive trol of DC series		ssion. [5+5]
7 The f	conductors wave- flux per pole is 2:	connected suppl 5mWb and its ar	lying a load of 8.3 mature circuit res	2 KW by taking sistance is 0.6Ω	
10,a) Explained by Explain	ain the brake tes lency of the moto ain the procedure	t to be conducte or?	winburne's test i	motor, How do	you estimate the [5+5]
b) A 20		develops an out	put of 17.158 kV istance 0.06Ω . V		0.2kW. The field eiency and power [5+5]
			00O00		
26	26	26			
1000 401 100 2001 2000 2001	200 Jan 200 200 810 200	26	300 100 300 200 200 200	25	Party State
	26				

Code No: 113BT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 PROBABILITY THEORY AND STOCHASTIC PROCESSES

	(Electro	onics and	Commun	ication Eng		
Time:	3 Hours					Max. Marks: 75
244 (244)		- 100				
Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A.					
	Part B consists of 5 Units. Answer any one full question from each unit Each question carries 10 marks and may have a, b, c as sub questions.					
	Each question carries	10 marks	and may	have a, b,	c as sub quest	tions.
			TO 1 TO 170			
	all the		PART-	A		(25.14.1.)
					1	(25 Marks)
1.a)	Distinguish discrete a					[2]
b)	Using Venn diagrams			gan's law: .	$A \cup B = A \cap I$	
c)	Discuss about Chebys					[2]
. d)	Discuss the monotoni				uous random	
e)	Define mean and vari					[2]
f)	Explain marginal dist					[3]
g)	Discuss the classification	-		0		[2]
h)	State the properties of					[3]
i)	Give the properties of	•				[2]
j)	Discuss the relationsh	np betwee	en PSD a	nd ACF.		[3]
2004 100	(#9999K (*KR)		PART	D		
			PART	•В		(50 Marks)
						(SO Manks)
2 0)	Evaluin the Avious of	f Probabil	ity			
2.a)	Explain the Axious of Range			central limi	it theorem	[5+5]
2.a) b)	Explain the Axious of Discuss some of Rand		bles and	central limi	it theorem.	[5+5]
b)	Discuss some of Rand	dom varia		central limi	it theorem.	[5+5]
	Discuss some of Rand Explain the following	dom varia	bles and OR		it theorem.	
b) 3.a)	Explain the following i) Independent events	dom varia g: ii) T	bles and OR Otal prob	pability.		11 111
b)	Explain the following i) Independent events In a group of externa	dom varia g: ii) T I number	OR Otal protof men a	pability.	10% men and	d 45% women are
b) 3.a)	Explain the following i) Independent events In a group of externa unemployed. What	dom varia g: ii) T I number	OR Otal protof men a	pability.	10% men and	d 45% women are ed at random is
b) 3.a)	Explain the following i) Independent events In a group of externa	dom varia g: ii) T I number	OR Otal protof men a	pability.	10% men and	d 45% women are
b) 3.a) b)	Explain the following i) Independent events In a group of externa unemployed. What employed?	ii) T l number is the pr	or Or Otal prob of men a robability	pability. nd women y that a p	10% men and person selecte	d 45% women are ed at random is [5+5]
b) 3.a) b) 4.a)	Explain the following i) Independent events In a group of externa unemployed. What employed? What are the properti	ii) T l number is the presented of the p	or Cotal probotics of men a robability	pability. Ind women India that a part of the part of	10% men and person selected and prove any	d 45% women are ed at random is [5+5] four properties?
b) 3.a) b)	Explain the following i) Independent events In a group of externa unemployed. What employed?	ii) T l number is the presented of the p	or Cotal probotics of men a robability	pability. Ind women India that a part of the part of	10% men and person selected and prove any	d 45% women are ed at random is [5+5] four properties?
b) 3.a) b) 4.a) b)	Explain the following i) Independent events In a group of externa unemployed. What employed? What are the properti	ii) T I number is the presence of pow stribution	or Cotal probof men a robability er spectra is limitin	pability. Ind women Individual that a part of	10% men and person selected and prove any sinomial distri	d 45% women are ed at random is [5+5] four properties? bution. [5+5]
b) 3.a) b) 4.a) b) 5.a)	Explain the following i) Independent events In a group of externa unemployed. What employed? What are the properti Prove that Poisson dis-	ii) T l number is the presence of pow stribution	otal proboformen a robability er spectra is limiting of the original of the other probability of	pability. Ind women Individual that a part of	10% men and person selected and prove any sinomial distriction and mo	d 45% women are ed at random is [5+5] four properties? bution. [5+5]
b) 3.a) b) 4.a) b) 5.a)	Explain the following i) Independent events In a group of externa unemployed. What employed? What are the properti Prove that Poisson dia Derive the relation be	ii) T l number is the presence of pow stribution	otal proboformen a robability er spectra is limiting of the original of the other probability of	pability. Ind women Individual that a part of	10% men and person selected and prove any sinomial distri	d 45% women are ed at random is [5+5] four properties? bution. [5+5]
b) 3.a) b) 4.a) b)	Explain the following i) Independent events In a group of externa unemployed. What employed? What are the properti Prove that Poisson di Derive the relation be Explain the Gaussian Two statistically inde	ii) T I number is the pr es of pow stribution etween mo density for	or Cotal probof men a robability er spectra is limiting OR coment generation.	pability. Ind women Individual that a property and density and case of because of the case of the carriables X and carriabl	10% men and person selected and prove any sinomial distriction and modern and Y have research	d 45% women are ed at random is [5+5] four properties? bution. [5+5] ments. [5+5]
b) 3.a) b) 4.a) b) 5.a) b)	Explain the following i) Independent events In a group of externa unemployed. What employed? What are the properti Prove that Poisson di Derive the relation be Explain the Gaussian	ii) T I number is the pr es of pow stribution etween mo density for	or Cotal probof men a robability er spectra is limiting OR coment generation.	pability. Ind women Individual that a property and density and case of because of the case of the carriables X and carriabl	10% men and person selected and prove any sinomial distriction and modern and Y have research	d 45% women are ed at random is [5+5] four properties? bution. [5+5] ments. [5+5]
b) 3.a) b) 4.a) b) 5.a) b)	Explain the following i) Independent events In a group of externa unemployed. What employed? What are the properti Prove that Poisson did Explain the Gaussian Two statistically indef $f_x(x)=5e^{-5x}u(x), f_y(y)=$	ii) To a second waria is ii) To a second power ween more density for a second power and the second power is the second power in the second power i	or Cotal probotics of men a crobability or spectra is limiting or comment generation.	pability. Ind women Individual that a part of being case of being fur ariables X ariables X are density of	10% men and person selected and prove any sinomial distribution and modular the sum W=2	d 45% women are ed at random is [5+5] four properties? bution. [5+5] ments. [5+5]
b) 3.a) b) 4.a) b) 5.a) b) 6.a)	Explain the following i) Independent events In a group of externa unemployed. What employed? What are the properti Prove that Poisson did Derive the relation be Explain the Gaussian Two statistically inde f _x (x)=5e ^{-5x} u(x), f _y (y)=Write all the propertion	ii) To a serious dom varia iii) To a serious the properties of power stribution and the serious and the seriou	or Cotal probof men a robability er spectra is limiting OR coment generation. andom value in the distribution or correction or correction.	pability. Ind women Ind that a property and density and case of because are all the case of the cariables X are density of the cion function	10% men and person selected and prove any sinomial distriction and moderated Y have resulted the sum W=X n.	d 45% women are ed at random is [5+5] four properties? bution. [5+5] ments. [5+5] spective densities K+Y. [5+5]
b) 3.a) b) 4.a) b) 5.a) b) 6.a)	Explain the following i) Independent events In a group of externa unemployed. What employed? What are the properti Prove that Poisson did Explain the Gaussian Two statistically indef $f_x(x)=5e^{-5x}u(x), f_y(y)=$	ii) To a serious dom varia iii) To a serious the properties of power stribution and the serious and the seriou	or Cotal probof men a robability er spectra is limiting OR coment generation. andom value in the distribution or correction or correction.	pability. Ind women Ind that a property and density and case of because are all the case of the cariables X are density of the cion function	10% men and person selected and prove any sinomial distriction and moderated Y have resulted the sum W=X n.	d 45% women are ed at random is [5+5] four properties? bution. [5+5] ments. [5+5] spective densities K+Y. [5+5]
b) 3.a) b) 4.a) b) 5.a) b) 6.a) b)	Explain the following i) Independent events In a group of externa unemployed. What employed? What are the properti Prove that Poisson discussion the Gaussian Two statistically indef f _x (x)=5e ^{-5x} u(x), f _y (y)= Write all the propertion the readom varia and the random varia	ii) T I number is the properties of power stribution etween moderative density for the pendent received and the pendent received able with the ble y=-4x	or Cotal proboformen a robability er spectra is limiting or concion. andom volument generation. andom volument find the distribution or correction or correction.	pability. Ind women Ind that a property and density and case of because are density of the control of the con	10% men and person selected and prove any sinomial distriction and moderated Y have resulted the sum W=2 n.	four properties? bution. [5+5] ments. [5+5] spective densities X+Y. [5+5] andom variable x
b) 3.a) b) 4.a) b) 5.a) b) 6.a) b)	Explain the following i) Independent events In a group of externa unemployed. What employed? What are the properti Prove that Poisson did to be Explain the Gaussian Two statistically inde f _x (x)=5e ^{-5x} u(x), f _y (y)= Write all the propertion.	ii) T I number is the properties of power stribution etween moderative density for the pendent received and the pendent received able with the ble y=-4x	or Cotal proboformen a robability er spectra is limiting or concion. andom volument generation. andom volument find the distribution or correction or correction.	pability. Ind women Ind that a property and density and case of because are density of the control of the con	10% men and person selected and prove any sinomial distriction and moderated Y have resulted the sum W=2 n.	four properties? bution. [5+5] ments. [5+5] spective densities X+Y. [5+5] andom variable x

Define Exgodic Process, Explain the difference between Exgodic process and .8.a) stationary process. b) Given the random process: $x(t) = A \sin (\omega_0 t + \theta)$ Where A and w_0 are constants are '\theta' is a Random variable uniformly distributed on the interval $(-\pi,\pi)$. Define a new random process $y(t) = x^{2}(t)$ and find the auto correction function of y(t). OR ... 9.a) Derive the relation between the auto correlation and power spectral density of a periodic wave form. [5+5]Write short notes on "power density spectrum", b) What is cross power density spectrum? State its properties. ...10.a) If the Auto Correlation Function of a WSS process is $R(\tau) = K^{-e\tau}$, find its PSD.b) [5+5]OR Derive the relation between input and output ACF of an LTI system with impulse 11.a) response h(t). b) Prove that the cross power spectrum and cross correlation function of Random process form a Fourier transform pair. ---00O00---

Code No: 53007

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2016

MATHEMATICS-III (Common to EEE, ECE, ETM, EIE, AGE)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

Using Beta and Gamma function, evaluate the integral $\int_{-1}^{1} (1-x^2)^n dx$ where n is 1.a) a positive integer.

If n > 1, prove that $\int_0^x x^{-n} J_{n+1}(x) dx = \frac{1}{2^n \Gamma(n+1)} - x^{-n} J_n(x)$. [8+7]b)

2.a)

Prove that $P_n^{'} - P_{n-2}^{'} = (2n-1)P_{n-1}$. Prove that $T_{n+1}(x) - 2xT_n(x) + T_{n-1}(x) = 0$. [7+8]b)

- If A +*i*B = tan⁻¹(*x*+*iy*), prove that B = $\frac{1}{4}log\frac{x^2+(1+y)^2}{x^2+(1-y)^2}$. 3.a)
 - If f(z) = u + iv is an analytic function in a region R, prove that the curves form b) $u(x, y) = c_1, v(x, y) = c_2$ two orthogonal families. [7+8]
- Evaluate the integral $\int_{c} \sqrt{z} dz$ where c: $z = z(t) = e^{it}$, $0 \le t \le 2\pi$. [15]4.
- If f(z) has a pole at z = a then prove that $\lim_{z \to a} f(z) = \infty$. 5.a)
 - Let a be an isolated singularity of f(z) and if |f(z)| is bounded on some b) neighborhood of a, then, Prove that a is a removable singularity. [7+8]
- Evaluate $\int_{-\infty}^{\infty} \frac{z^2 z + 2}{z^4 + 10z^2 + 9} dz$. [15]
- Find the bilinear transform which maps the points z = 0, -i, -1 into the points 7. w = i, 1, 0. Find the image of the line y = mx under this transformation.
- Define the following: 8.a)
 - i) A circuit
 - ii) Connected graph
 - iii) Hamiltonian path.
 - Prove that number of edges in a bipartite graph with n vertices is at most $(n^2/4)$. b) [8+7]

---00O00---

Code No: X0421

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 80

Answer any five questions All questions carry equal marks

1.a) Define probability based on set theory and distinguish between the Joint and conditional probability with an example.

b) If a three digit decimal number is chosen at random, find the probability that exactly K digits are greater than equal to 5, for $0 \le K \le 3$. [8+8]

2.a) Discuss the Gaussian and Rayleigh density functions and their distributions with their plots.

b) Prove that the characteristic function and probability density function form a Fourier transform pair. [8+8]

3.a) Describe the concept of a transformation of a random variable X with its properties.

b) Let X be a random variable defined, Find E [3X] and $E[X^2]$ given the density function

as $f_x(x) = \frac{(\pi/16)\cos(\pi x/8)}{0}$; $-4 \le x \le 4$ elsewhere

4.a) Mention about the auto correlation and cross correlation function and describe their properties in brief.

b) Define conditional distribution and density function of two random variables X and Y [8+8]

5.a) Discuss about the Joint Central Moments, and the Joint Characteristic Functions in detail.

b) Find the PSD of a random process z(t) = X(t) + y(t), where x(t) and y(t) are zero mean, individual random process. [8+8]

6. Discuss in detail:

a) Mean-Ergodic Processes.

b) Second order and Wide-Sense Stationary Random Process.

[8+8]

7.a) Derive the relationship between Power Spectrum and Autocorrelation Function.

b) The auto correlation function of a random process X(t) is $R_{XX}(\tau) = 3+2 \exp(-4\tau^2)$. Calculate the power spectrum and average power of X(t). [8+8]

8.a) Describe the different noise sources and write about Effective Noise Temperature and Average Noise Figures.

b) Write short notes on:

(i) Flicker noise

(ii) Johnson's noise.

[8+8]